Synthesis of Quantum-Confined Borophene Nanoribbons

被引:11
|
作者
Li, Qiucheng [1 ]
Wang, Luqing [2 ,3 ]
Li, Hui [1 ]
Chan, Maria K. Y. [2 ,3 ]
Hersam, Mark C. [1 ,4 ,5 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[3] Northwestern Argonne Inst Sci & Engn, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
two-dimensional boron; one-dimensionalnanoribbons; scanning tunneling microscopy; quantum-confinedstates; Friedel oscillations; METAL-SURFACES; EDGE; ELECTRONS; STATE; BORON; SCATTERING; WAVES;
D O I
10.1021/acsnano.3c08089
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Borophene nanoribbons (BNRs) are one-dimensional strips of atomically thin boron expected to exhibit quantum-confined electronic properties that are not present in extended two-dimensional borophene. While the parent material borophene has been experimentally shown to possess anisotropic metallicity and diverse polymorphic structures, the atomically precise synthesis of nanometer-wide BNRs has not yet been achieved. Here, we demonstrate the synthesis of multiple BNR polymorphs with well-defined edge configurations within the nanometer-scale terraces of vicinal Ag(977). Through atomic-scale imaging, spectroscopy, and first-principles calculations, the synthesized BNR polymorphs are characterized and found to possess distinct edge structures and electronic properties. For single-phase BNRs, v(1/6)-BNRs and v(1/5)-BNRs adopt reconstructed armchair edges and sawtooth edges, respectively. In addition, the electronic properties of single-phase v(1/6)-BNRs and v(1/5)-BNRs are dominated by Friedel oscillations and striped moir & eacute; patterns, respectively. On the other hand, mixed-phase BNRs possess quantum-confined states with increasing nodes in the electronic density of states at elevated biases. Overall, the high degree of polymorphism and diverse edge topologies in borophene nanoribbons provide a rich quantum platform for studying one-dimensional electronic states.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 50 条
  • [31] Synthesis and Spectroscopy of Monodispersed, Quantum-Confined FAPbBr3 Perovskite Nanocrystals
    Li, Yulu
    Ding, Tao
    Luo, Xiao
    Tian, Yuyang
    Lu, Xin
    Wu, Kaifeng
    CHEMISTRY OF MATERIALS, 2020, 32 (01) : 549 - 556
  • [32] Quantum-confined superfluid: From nature to artificial
    Wen, Liping
    Zhang, Xiqi
    Tian, Ye
    Jiang, Lei
    SCIENCE CHINA-MATERIALS, 2018, 61 (08) : 1027 - 1032
  • [33] THz quantum-confined Stark effect in semiconductor quantum dots
    Turchinovich, Dmitry
    Monozon, Boris S.
    Livshits, Daniil A.
    Rafailov, Edik U.
    Hoffmann, Matthias C.
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XVI, 2012, 8260
  • [34] Quantum-confined Stark effects in a single GaN quantum dot
    Liu Yong-Hui
    Wang Xue-Feng
    Li Shu-Shen
    CHINESE PHYSICS LETTERS, 2008, 25 (07) : 2628 - 2630
  • [35] Quantum-confined stark effects in a single GaN quantum dot
    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
    Chin. Phys. Lett., 2008, 7 (2628-2630):
  • [36] Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials
    Ren, Lei
    Zhang, Qi
    Nanot, Sebastien
    Kawayama, Iwao
    Tonouchi, Masayoshi
    Kono, Junichiro
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2012, 33 (08) : 846 - 860
  • [37] Quantum-confined strain gradient effect in semiconductor nanomembranes
    Binder, R.
    Gu, B.
    Kwong, N. H.
    PHYSICAL REVIEW B, 2014, 90 (19):
  • [38] OBSERVATION OF QUANTUM-CONFINED ELECTRON-HOLE DROPLETS
    KALT, H
    NOTZEL, R
    PLOOG, K
    GIESSEN, H
    SOLID STATE COMMUNICATIONS, 1992, 83 (04) : 285 - 288
  • [39] Quantum-confined ion superfluid in nerve signal transmission
    Xiqi Zhang
    Lei Jiang
    Nano Research, 2019, 12 : 1219 - 1221
  • [40] Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si
    Rong, Yiwen
    Ge, Yangsi
    Huo, Yijie
    Fiorentino, Marco
    Tan, Michael R. T.
    Kamins, Theodore I.
    Ochalski, Tomasz J.
    Huyet, Guillaume
    Harris, James S., Jr.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (01) : 85 - 92