Serum Metabolic Fingerprints Characterize Systemic Lupus Erythematosus

被引:2
作者
Li, Shunxiang [1 ,2 ,3 ,4 ]
Ding, Huihua [5 ,6 ]
Qi, Ziheng [7 ]
Yang, Jing [1 ,2 ,3 ,4 ]
Huang, Jingyi [1 ,2 ]
Huang, Lin [8 ]
Zhang, Mengji [1 ,2 ,3 ,4 ]
Tang, Yuanjia [5 ,6 ]
Shen, Nan [5 ,6 ]
Qian, Kun [1 ,2 ,3 ,4 ]
Guo, Qiang [5 ,6 ]
Wan, Jingjing [7 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Medx Res Inst, Shanghai 200030, Peoples R China
[3] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, State Key Lab Oncogenes & Related Genes, Shanghai 200127, Peoples R China
[4] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Dept Obstet & Gynecol, Shanghai 200127, Peoples R China
[5] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Dept Rheumatol, Shanghai 200001, Peoples R China
[6] Shanghai Jiao Tong Univ, Renji Hosp, Shanghai Inst Rheumatol, Sch Med, Shanghai 200001, Peoples R China
[7] East China Normal Univ, Sch Chem & Mol Engn, Shanghai 200241, Peoples R China
[8] Shanghai Jiao Tong Univ, Shanghai Chest Hosp, Shanghai Inst Thorac Tumors, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
diagnostics; mass spectrometry; metabolites; systemic lupus erythematosus; PROFILING REVEALS; DISEASE; BIOMARKERS; ANTIBODIES; SAMPLES; IMPACT; MATRIX; BLOOD;
D O I
10.1002/advs.202304610
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metabolic fingerprints in serum characterize diverse diseases for diagnostics and biomarker discovery. The identification of systemic lupus erythematosus (SLE) by serum metabolic fingerprints (SMFs) will facilitate precision medicine in SLE in an early and designed manner. Here, a discovery cohort of 731 individuals including 357 SLE patients and 374 healthy controls (HCs), and a validation cohort of 184 individuals (SLE/HC, 91/93) are constructed. Each SMF is directly recorded by nano-assisted laser desorption/ionization mass spectrometry (LDI MS) within 1 minute using 1 mu L of native serum, which contains 908 mass to charge features. Sparse learning of SMFs achieves the SLE identification with sensitivity/specificity and area-under-the-curve (AUC) up to 86.0%/92.0% and 0.950 for the discovery cohort. For the independent validation cohort, it exhibits no performance loss by affording the sensitivity/specificity and AUC of 89.0%/100.0% and 0.992. Notably, a metabolic biomarker panel is screened out from the SMFs, demonstrating the unique metabolic pattern of SLE patients different from both HCs and rheumatoid arthritis patients. In conclusion, SMFs characterize SLE by revealing its unique metabolic pattern. Different regulation of small molecule metabolites contributes to the precise diagnosis of autoimmune disease and further exploration of the pathogenic mechanisms. Systemic lupus erythematosus (SLE) with the highest area under the curve value of 0.992 by sparse learning of serum metabolic fingerprints of a large cohort of 915 individuals are characterized. A high-performance nano-assisted laser desorption/ionization mass spectrometry is developed for the acquisition of serum metabolic fingerprints within 1 min using 1 mu L of each native serum. This work provides a promising assay for SLE precision diagnosis with high throughput and low sample consumption in clinics.image
引用
收藏
页数:10
相关论文
共 62 条
  • [1] In an early SLE cohort the ACR-1997, SLICC-2012 and EULAR/ACR-2019 criteria classify non-overlapping groups of patients: use of all three criteria ensures optimal capture for clinical studies while their modification earlier classification and treatment
    Adamichou, Christina
    Nikolopoulos, Dionysis
    Genitsaridi, Irini
    Bortoluzzi, Alessandra
    Fanouriakis, Antonis
    Papastefanakis, Emmanouil
    Kalogiannaki, Eleni
    Gergianaki, Irini
    Sidiropoulos, Prodromos
    Boumpas, Dimitrios T.
    Bertsias, George K.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2020, 79 (02) : 232 - 241
  • [2] Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system
    Angelica Pabon-Porras, Maria
    Molina-Rios, Sebastian
    Bruce Florez-Suarez, Jorge
    Ximena Coral-Alvarado, Paola
    Mendez-Patarroyo, Paul
    Quintana-Lopez, Gerardo
    [J]. SAGE OPEN MEDICINE, 2019, 7
  • [3] Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus
    Bashant, Kathleen R.
    Aponte, Angel M.
    Randazzo, Davide
    Sangsari, Paniz Rezvan
    Wood, Alexander J. T.
    Bibby, Jack A.
    West, Erin E.
    Vassallo, Arlette
    Manna, Zerai G.
    Playford, Martin P.
    Jordan, Natasha
    Hasni, Sarfaraz
    Gucek, Marjan
    Kemper, Claudia
    Morris, Andrew Conway
    Morgan, Nicole Y.
    Toepfner, Nicole
    Guck, Jochen
    Mehta, Nehal N.
    Chilvers, Edwin R.
    Summers, Charlotte
    Kaplan, Mariana J.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (02) : 209 - 218
  • [4] Metabolic Profiling of Systemic Lupus Erythematosus and Comparison with Primary Sjogren's Syndrome and Systemic Sclerosis
    Bengtsson, Anders A.
    Trygg, Johan
    Wuttge, Dirk M.
    Sturfelt, Gunnar
    Theander, Elke
    Donten, Magdalena
    Moritz, Thomas
    Sennbro, Carl-Johan
    Torell, Frida
    Lood, Christian
    Surowiec, Izabella
    Rannar, Stefan
    Lundstedt, Torbjorn
    [J]. PLOS ONE, 2016, 11 (07):
  • [5] Are anti-nucleosome antibodies a better diagnostic marker than anti-dsDNA antibodies for systemic lupus erythematosus? A systematic review and a study of metanalysis
    Bizzaro, Nicola
    Villalta, Danilo
    Giavarina, Davide
    Tozzoli, Renato
    [J]. AUTOIMMUNITY REVIEWS, 2012, 12 (02) : 97 - 106
  • [6] Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice
    Bruemmer, Kevin J.
    Green, Ori
    Su, Timothy A.
    Shabat, Doron
    Chang, Christopher J.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (25) : 7508 - 7512
  • [7] Metabolic Fingerprinting on Synthetic Alloys for Medulloblastoma Diagnosis and Radiotherapy Evaluation
    Cao, Jing
    Shi, Xuejiao
    Gurav, Deepanjali D.
    Huang, Lin
    Su, Haiyang
    Li, Keke
    Niu, Jingyang
    Zhang, Mengji
    Wang, Qian
    Jiang, Mawei
    Qian, Kun
    [J]. ADVANCED MATERIALS, 2020, 32 (23)
  • [8] The global burden of SLE: prevalence, health disparities and socioeconomic impact
    Carter, Erin E.
    Barr, Susan G.
    Clarke, Ann E.
    [J]. NATURE REVIEWS RHEUMATOLOGY, 2016, 12 (10) : 605 - 620
  • [9] TiO2/MXene-Assisted LDI-MS for Urine Metabolic Profiling in Urinary Disease
    Chen, Junyu
    Li, Yuze
    Jiang, Yuming
    Mao, Liucheng
    Lai, Mi
    Jiang, Lixia
    Liu, Huihui
    Nie, Zongxiu
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (52)
  • [10] Choi S.-C., 2020, SCI TRANSL MED, V12, P15