Searching for long faint astronomical high energy transients: a data driven approach

被引:3
作者
Crupi, Riccardo [1 ,2 ]
Dilillo, Giuseppe [1 ,3 ]
Bissaldi, Elisabetta [4 ,5 ]
Ward, Kester [6 ]
Fiore, Fabrizio [2 ]
Vacchi, Andrea [1 ,7 ]
机构
[1] Univ Udine, DMIF, Via Sci 206, I-33100 Udine, Italy
[2] INAF, Osservatorio Astron Trieste, Via Tiepolo 11, I-34143 Trieste, Italy
[3] INAF, IAPS, Via Fosso Cavaliere 100, I-00113 Rome, Italy
[4] Politecn Bari, Dipartimento Interateneo Fis, Via E Orabona 4, I-70125 Bari, Italy
[5] Ist Nazl Fis Nucl, Sez Bari, Via E Orabona 4, I-70125 Bari, Italy
[6] Univ Lancaster, STOR I Doctoral Training Ctr, Lancaster, England
[7] Ist Nazl Fis Nucl, Sez Trieste, Via Padriciano 99, I-34149 Trieste, Italy
关键词
Gamma-ray burst; Deep learning; Trigger algorithm; Background estimation; NEURAL-NETWORKS; MONITOR;
D O I
10.1007/s10686-023-09915-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
HERMES Pathfinder is an in-orbit demonstration consisting of a constellation of six 3U nano-satellites hosting simple but innovative detectors for the monitoring of cosmic high-energy transients. The main objective of HERMES Pathfinder is to prove that accurate position of high-energy cosmic transients can be obtained using miniaturized hardware. The transient position is obtained by studying the delay time of arrival of the signal to different detectors hosted by nano-satellites on low-Earth orbits. In this context, we need to develop novel tools to fully exploit the future scientific data output of HERMES Pathfinder. In this paper, we introduce a new framework to assess the background count rate of a spaceborne, high energy detector; a key step towards the identification of faint astrophysical transients. We employ a neural network to estimate the background lightcurves on different timescales. Subsequently, we employ a fast change-point and anomaly detection technique called Poisson-FOCuS to identify observation segments where statistically significant excesses in the observed count rate relative to the background estimate exist. We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder. The neural network performances are discussed and analyzed over period of both high and low solar activity. We were able to confirm events in the Fermi-GBM catalog, both solar flares and gamma-ray bursts, and found events, not present in Fermi-GBM database, that could be attributed to solar flares, terrestrial gamma-ray flashes, gamma-ray bursts and galactic X-ray flashes. Seven of these are selected and further analyzed, providing an estimate of localisation and a tentative classification.
引用
收藏
页码:557 / 568
页数:12
相关论文
共 64 条
[1]  
Auchettl K., 2022, AAS/High Energy Astrophysics Div, V54, P305
[2]   Feed-forward neural networks [J].
Bebis, George ;
Georgiopoulos, Michael .
IEEE Potentials, 1994, 13 (04) :27-31
[3]   Short-Duration Gamma-Ray Bursts [J].
Berger, Edo .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 52, 2014, 52 :43-105
[4]   The SVOM Mission [J].
Bernardini, Maria Grazia ;
Cordier, Bertrand ;
Wei, Jianyan .
GALAXIES, 2021, 9 (04)
[5]   THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS [J].
Bhat, P. Narayana ;
Meegan, Charles A. ;
von Kienlin, Andreas ;
Paciesas, William S. ;
Briggs, Michael S. ;
Burgess, J. Michael ;
Burns, Eric ;
Chaplin, Vandiver ;
Cleveland, William H. ;
Collazzi, Andrew C. ;
Connaughton, Valerie ;
Diekmann, Anne M. ;
Fitzpatrick, Gerard ;
Gibby, Melissa H. ;
Giles, Misty M. ;
Goldstein, Adam M. ;
Greiner, Jochen ;
Jenke, Peter A. ;
Kippen, R. Marc ;
Kouveliotou, Chryssa ;
Mailyan, Bagrat ;
McBreen, Sheila ;
Pelassa, Veronique ;
Preece, Robert D. ;
Roberts, Oliver J. ;
Sparke, Linda S. ;
Stanbro, Matthew ;
Veres, Peter ;
Wilson-Hodge, Colleen A. ;
Xiong, Shaolin ;
Younes, George ;
Yu, Hoi-Fung ;
Zhang, Binbin .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2016, 223 (02)
[6]   Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions [J].
Bhowmik, Prantika ;
Nandy, Dibyendu .
NATURE COMMUNICATIONS, 2018, 9
[7]  
Biesecker D.A., 2019, AGU FALL M ABSTR, V2019, P13
[8]   A physical background model for the Fermi Gamma-ray Burst Monitor [J].
Biltzinger, B. ;
Kunzweiler, F. ;
Greiner, J. ;
Toelge, K. ;
Burgess, J. Michael .
ASTRONOMY & ASTROPHYSICS, 2020, 640
[9]   NEURAL NETWORKS AND THEIR APPLICATIONS [J].
BISHOP, CM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (06) :1803-1832
[10]   Ground-based calibration and characterization of the Fermi gamma-ray burst monitor detectors [J].
Bissaldi, E. ;
von Kienlin, A. ;
Lichti, G. ;
Steinle, H. ;
Bhat, P. N. ;
Briggs, M. S. ;
Fishman, G. J. ;
Hoover, A. S. ;
Kippen, R. M. ;
Krumrey, M. ;
Gerlach, M. ;
Connaughton, V. ;
Diehl, R. ;
Greiner, J. ;
van der Horst, A. J. ;
Kouveliotou, C. ;
McBreen, S. ;
Meegan, C. A. ;
Paciesas, W. S. ;
Preece, R. D. ;
Wilson-Hodge, C. A. .
EXPERIMENTAL ASTRONOMY, 2009, 24 (1-3) :47-88