Toward smart diagnostics via artificial intelligence-assisted surface-enhanced Raman spectroscopy

被引:9
|
作者
Horta-Velazquez, Amauri [1 ]
Arce, Fernando [1 ]
Rodriguez-Sevilla, Erika [1 ]
Morales-Narvaez, Eden [2 ]
机构
[1] Ctr Invest Opt CIO AC, Loma Del Bosque 115, Leon 37150, Guanajuato, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Fis Aplicada & Tecnol Avanzada CFATA, Biophoton Nanosensors Lab, Queretaro 76230, Mexico
关键词
Machine learning; Nanophotonics; Biophotonics; Nanoplasmonics; Vibrational spectroscopy; METAL NANOPARTICLES; PLASMA PROTEOME; HOT-SPOTS; SERS; SCATTERING; CANCER; SENSOR; CLASSIFICATION; IMMUNOASSAY; CHEMISTRY;
D O I
10.1016/j.trac.2023.117378
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Molecular information contained in bodily fluids (ex. Blood, urine, saliva, or tears) can be minutely obtained through label-free surface-enhanced Raman spectroscopy (SERS). However, the resulting SERS spectra require complex analysis to transform such spectral information into accurate diagnostics. Herein, we review how scientists and technologists are employing SERS and artificial intelligence (AI) to carry out prediction, classification, spectral variation detection, and pattern recognition tasks to extract molecular information and generate diagnostic models or staging platforms based on disease-related molecular variations (reflected in the analyzed spectra). The employed SERS substrates are critically discussed and AI methods applied to assist SERS-based diagnostics are also elaborated. Particular applications such as the AI-assisted diagnosis of cancer, infectious diseases, and other illnesses (including stroke and Alzheimer's) are also covered. Besides, our perspective to push forward the frontiers of this exciting field toward smart diagnostics and their clinical translation is offered.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Advancements in cancer diagnostics: integrating surface-enhanced Raman spectroscopy and microptofluidics for precision and versatility
    Patel, Mohamed T.
    Oppenheimer, Pola Goldberg Goldberg
    APPLIED SPECTROSCOPY REVIEWS, 2025,
  • [22] Reusable Surface-Enhanced Raman Spectroscopy Membranes and Textiles via Template-Assisted Self-Assembly and Micro/Nanoimprinting
    Garg, Aditya
    Nam, Wonil
    Zhou, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) : 56290 - 56299
  • [23] Surface-enhanced Raman Spectroscopy
    Nishino, Tomoaki
    ANALYTICAL SCIENCES, 2018, 34 (09) : 1061 - 1062
  • [24] Surface-enhanced Raman spectroscopy of indanthrone and flavanthrone
    Chang, Jingjing
    Canamares, Maria Vega
    Aydin, Metin
    Vetter, Wilfried
    Schreiner, Manfred
    Xu, Weiqing
    Lombardi, John R.
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (11) : 1557 - 1563
  • [25] Surface-enhanced Raman spectroscopy in forensic analysis
    Holman, Aidan P.
    Kurouski, Dmitry
    REVIEWS IN ANALYTICAL CHEMISTRY, 2024, 43 (01)
  • [26] The Variety of Substrates for Surface-enhanced Raman Spectroscopy
    Mikac, L.
    Gotic, M.
    Gebavi, H.
    Ivanda, M.
    PROCEEDINGS OF THE 2017 IEEE 7TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP), 2017,
  • [27] Graphene: A Platform for Surface-Enhanced Raman Spectroscopy
    Xu, Weigao
    Mao, Nannan
    Zhang, Jin
    SMALL, 2013, 9 (08) : 1206 - 1224
  • [28] Breakthrough Solution for Antimicrobial Resistance Detection: Surface-Enhanced Raman Spectroscopy-based on Artificial Intelligence
    Al-Shaebi, Zakarya
    Akdeniz, Munevver
    Ahmed, Awel Olsido
    Altunbek, Mine
    Aydin, Omer
    ADVANCED MATERIALS INTERFACES, 2023,
  • [29] Nanopillar Filters for Surface-Enhanced Raman Spectroscopy
    Durucan, Onur
    Rindzevicius, Tomas
    Schmidt, Michael Stenbaek
    Matteucci, Marco
    Boisen, Anja
    ACS SENSORS, 2017, 2 (10): : 1400 - 1404
  • [30] Surface-enhanced Raman spectroscopy of semiconductor nanostructures
    Milekhin, A. G.
    Sveshnikova, L. L.
    Duda, T. A.
    Yeryukov, N. A.
    Rodyakina, E. E.
    Gutakovskii, A. K.
    Batsanov, S. A.
    Latyshev, A. V.
    Zahn, D. R. T.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 75 : 210 - 222