Toward smart diagnostics via artificial intelligence-assisted surface-enhanced Raman spectroscopy

被引:17
作者
Horta-Velazquez, Amauri [1 ]
Arce, Fernando [1 ]
Rodriguez-Sevilla, Erika [1 ]
Morales-Narvaez, Eden [2 ]
机构
[1] Ctr Invest Opt CIO AC, Loma Del Bosque 115, Leon 37150, Guanajuato, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Fis Aplicada & Tecnol Avanzada CFATA, Biophoton Nanosensors Lab, Queretaro 76230, Mexico
关键词
Machine learning; Nanophotonics; Biophotonics; Nanoplasmonics; Vibrational spectroscopy; METAL NANOPARTICLES; PLASMA PROTEOME; HOT-SPOTS; SERS; SCATTERING; CANCER; SENSOR; CLASSIFICATION; IMMUNOASSAY; CHEMISTRY;
D O I
10.1016/j.trac.2023.117378
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Molecular information contained in bodily fluids (ex. Blood, urine, saliva, or tears) can be minutely obtained through label-free surface-enhanced Raman spectroscopy (SERS). However, the resulting SERS spectra require complex analysis to transform such spectral information into accurate diagnostics. Herein, we review how scientists and technologists are employing SERS and artificial intelligence (AI) to carry out prediction, classification, spectral variation detection, and pattern recognition tasks to extract molecular information and generate diagnostic models or staging platforms based on disease-related molecular variations (reflected in the analyzed spectra). The employed SERS substrates are critically discussed and AI methods applied to assist SERS-based diagnostics are also elaborated. Particular applications such as the AI-assisted diagnosis of cancer, infectious diseases, and other illnesses (including stroke and Alzheimer's) are also covered. Besides, our perspective to push forward the frontiers of this exciting field toward smart diagnostics and their clinical translation is offered.
引用
收藏
页数:24
相关论文
共 201 条
[61]   Plasmonic nanostructures for surface enhanced spectroscopic methods [J].
Jahn, Martin ;
Patze, Sophie ;
Hidi, Izabella J. ;
Knipper, Richard ;
Radu, Andreea I. ;
Muehlig, Anna ;
Yueksel, Sezin ;
Peksa, Vlastimil ;
Weber, Karina ;
Mayerhoefer, Thomas ;
Cialla-May, Dana ;
Popp, Juergen .
ANALYST, 2016, 141 (03) :756-793
[62]   Machine learning and deep learning [J].
Janiesch, Christian ;
Zschech, Patrick ;
Heinrich, Kai .
ELECTRONIC MARKETS, 2021, 31 (03) :685-695
[63]   Healthcare 4.0: A review of frontiers in digital health [J].
Jayaraman, Prem Prakash ;
Forkan, Abdur Rahim Mohammad ;
Morshed, Ahsan ;
Haghighi, Pari Delir ;
Kang, Yong-Bin .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (02)
[64]  
Jeon TY, 2016, NANO CONVERG, V3
[65]   Detection of nanoplastics based on surface-enhanced Raman scattering with silver nanowire arrays on regenerated cellulose films [J].
Jeon, Youngho ;
Kim, Dabum ;
Kwon, Goomin ;
Lee, Kangyun ;
Oh, Chang-Sik ;
Kim, Ung-Jin ;
You, Jungmok .
CARBOHYDRATE POLYMERS, 2021, 272
[66]   The biology, function, and biomedical applications of exosomes [J].
Kalluri, Raghu ;
LeBleu, Valerie S. .
SCIENCE, 2020, 367 (6478) :640-+
[67]   A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications [J].
Kasani, Sujan ;
Curtin, Kathrine ;
Wu, Nianqiang .
NANOPHOTONICS, 2019, 8 (12) :2065-2089
[68]   Classification of Preeclamptic Placental Extracellular Vesicles Using Femtosecond Laser Fabricated Nanoplasmonic Sensors [J].
Kazemzadeh, Mohammadrahim ;
Martinez-Calderon, Miguel ;
Paek, Song Y. ;
Lowe, MoiMoi ;
Aguergaray, Claude ;
Xu, Weiliang ;
Chamley, Lawrence W. ;
Broderick, Neil G. R. ;
Hisey, Colin L. .
ACS SENSORS, 2022, 7 (06) :1698-1711
[69]   Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications [J].
Kazemzadeh, Mohammadrahim ;
Hisey, Colin L. ;
Zargar-Shoshtari, Kamran ;
Xu, Weiliang ;
Broderick, Neil G. R. .
OPTICS COMMUNICATIONS, 2022, 510
[70]   Space curvature-inspired nanoplasmonic sensor for breast cancer extracellular vesicle fingerprinting and machine learning classification [J].
Kazemzadeh, Mohammadrahim ;
Hisey, Colin L. ;
Artuyants, Anastasiia ;
Blenkiron, Cherie ;
Chamley, Lawrence W. ;
Zargar-Shoshtari, Kamran ;
Xu, Weiliang ;
Broderick, Neil G. R. .
BIOMEDICAL OPTICS EXPRESS, 2021, 12 (07) :3965-3981