Influences of the Order of Derivative on the Dynamical Behavior of Fractional-Order Antisymmetric Lotka-Volterra Systems

被引:0
作者
Xu, Mengrui [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional differential equations; Lotka-Volterra system; boundedness; stability; DIFFERENTIAL-EQUATIONS; PREDATOR-PREY; GAME;
D O I
10.3390/fractalfract7050360
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the dynamic behavior of a class of fractional-order antisymmetric Lotka-Volterra systems. The influences of the order of derivative on the boundedness and stability are characterized by analyzing the first-order and 0<a<1-order antisymmetric Lotka-Volterra systems separately. We show that the order does not affect the boundedness but affects the stability. All solutions of the first-order system are periodic, while the 0<a<1-order system has no non-trivial periodic solution. Furthermore, the 0<a<1-order system can be reduced on a two-dimensional space and the reduced system is asymptotically stable, regardless of how close to zero the order of the derivative used is. Some numerical simulations are presented to better verify the theoretical analysis.
引用
收藏
页数:14
相关论文
共 32 条
  • [1] Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models
    Ahmed, E.
    El-Sayed, A. M. A.
    El-Saka, H. A. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 542 - 553
  • [2] Singular points in the solution trajectories of fractional order dynamical systems
    Bhalekar, Sachin
    Patil, Madhuri
    [J]. CHAOS, 2018, 28 (11)
  • [3] Chaos in fractional ordered Liu system
    Daftardar-Gejji, Varsha
    Bhalekar, Sachin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1117 - 1127
  • [4] Emergence of diverse dynamical responses in a fractional-order slow-fast pest-predator model
    Das, Subhashis
    Mahato, Sanat Kumar
    Mondal, Argha
    Kaslik, Eva
    [J]. NONLINEAR DYNAMICS, 2023, 111 (09) : 8821 - 8836
  • [5] Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
    Diethelm, Kai
    [J]. ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 : 3 - +
  • [6] A physical interpretation of fractional-order-derivatives in a jerk system: Electronic approach
    Echenausia-Monroy, J. L.
    Gilardi-Velazquez, H. E.
    Jaimes-Reategui, R.
    Aboites, V
    Huerta-Cuellar, G.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [7] Multistability Emergence through Fractional-Order-Derivatives in a PWL Multi-Scroll System
    Echenausia-Monroy, Jose Luis
    Huerta-Cuellar, Guillermo
    Jaimes-Reategui, Rider
    Garcia-Lopez, Juan Hugo
    Aboites, Vicente
    Cassal-Quiroga, Bahia Betzavet
    Gilardi-Velazquez, Hector Eduardo
    [J]. ELECTRONICS, 2020, 9 (06)
  • [8] EFFECT OF FRACTIONAL DERIVATIVE PROPERTIES ON THE PERIODIC SOLUTION OF THE NONLINEAR OSCILLATIONS
    El-Dib, Yusry O.
    Elgazery, Nasser S.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [9] Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization
    Elsadany A.A.
    Matouk A.E.
    [J]. Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 269 - 283
  • [10] Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
    Heymans, Nicole
    Podlubny, Igor
    [J]. RHEOLOGICA ACTA, 2006, 45 (05) : 765 - 771