The cellular architecture of memory modules in Drosophila supports stochastic input integration

被引:2
作者
Hafez, Omar A. [1 ,5 ]
Escribano, Benjamin [2 ,6 ]
Ziegler, Rouven L. [2 ]
Hirtz, Jan J. [3 ]
Niebur, Ernst [1 ,4 ]
Pielage, Jan [2 ]
机构
[1] Johns Hopkins Univ, Zanvyl Krieger Mind Brain Inst, Baltimore, MD 21218 USA
[2] Univ Kaiserslautern, Dept Biol, Div Neurobiol & Zool, Kaiserslautern, Germany
[3] Univ Kaiserslautern, Dept Biol, Physiol Neuronal Networks Grp, Kaiserslautern, Germany
[4] Johns Hopkins Univ, Solomon Snyder Dept Neurosci, Baltimore, MD 21218 USA
[5] Yale Sch Med, Yale MD PhD Program, New Haven, CT USA
[6] German Ctr Neurodegenerat Dis DZNE, Bonn, Germany
来源
ELIFE | 2023年 / 12卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
mushroom body output neuron; dendritic signal processing; decision making; long term memory; neuronal output tuning; short term memory; D; melanogaster; DEPENDENT SYNAPTIC PLASTICITY; BODY EFFERENT NEURONS; OLFACTORY REPRESENTATIONS; FEEDFORWARD INHIBITION; OUTPUT NEURONS; KENYON CELLS; MUSHROOM; DOPAMINE; EXPRESSION; RETRIEVAL;
D O I
10.7554/eLife.77578
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to associate neutral stimuli with valence information and to store these associations as memories forms the basis for decision making. To determine the underlying computational principles, we build a realistic computational model of a central decision module within the Drosophila mushroom body (MB), the fly's center for learning and memory. Our model combines the electron microscopy-based architecture of one MB output neuron (MBON-a3), the synaptic connectivity of its 948 presynaptic Kenyon cells (KCs), and its membrane properties obtained from patch-clamp recordings. We show that this neuron is electrotonically compact and that synaptic input corresponding to simulated odor input robustly drives its spiking behavior. Therefore, sparse innervation by KCs can efficiently control and modulate MBON activity in response to learning with minimal requirements on the specificity of synaptic localization. This architecture allows efficient storage of large numbers of memories using the flexible stochastic connectivity of the circuit.
引用
收藏
页数:23
相关论文
共 74 条
  • [51] Refinement of Tools for Targeted Gene Expression in Drosophila
    Pfeiffer, Barret D.
    Ngo, Teri-T B.
    Hibbard, Karen L.
    Murphy, Christine
    Jenett, Arnim
    Truman, James W.
    Rubin, Gerald M.
    [J]. GENETICS, 2010, 186 (02) : 735 - U488
  • [52] Two Pairs of Mushroom Body Efferent Neurons Are Required for Appetitive Long-Term Memory Retrieval in Drosophila
    Placais, Pierre-Yves
    Trannoy, Severine
    Friedrich, Anja B.
    Tanimoto, Hiromu
    Preat, Thomas
    [J]. CELL REPORTS, 2013, 5 (03): : 769 - 780
  • [53] Computational subunits in thin dendrites of pyramidal cells
    Polsky, A
    Mel, BW
    Schiller, J
    [J]. NATURE NEUROSCIENCE, 2004, 7 (06) : 621 - 627
  • [54] Drosophila Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to Distal Axonal Initial Segment-like Domains
    Ravenscroft, Thomas A.
    Janssens, Jasper
    Lee, Pei-Tseng
    Tepe, Burak
    Marcogliese, Paul C.
    Makhzami, Samira
    Holmes, Todd C.
    Aerts, Stein
    Bellen, Hugo J.
    [J]. JOURNAL OF NEUROSCIENCE, 2020, 40 (42) : 7999 - 8024
  • [55] Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila
    Rohwedder, Astrid
    Wenz, Nana L.
    Stehle, Bernhard
    Huser, Annina
    Yamagata, Nobuhiro
    Zlatic, Marta
    Truman, James W.
    Tanimoto, Hiromu
    Saumweber, Timo
    Gerber, Bertram
    Thum, Andreas S.
    [J]. CURRENT BIOLOGY, 2016, 26 (05) : 661 - 669
  • [56] Synaptic democracy in active dendrites
    Rumsey, Clifton C.
    Abbott, L. F.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2006, 96 (05) : 2307 - 2318
  • [57] Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila
    Saumweber, Timo
    Rohwedder, Astrid
    Schleyer, Michael
    Eichler, Katharina
    Chen, Yi-chun
    Aso, Yoshinori
    Cardona, Albert
    Eschbach, Claire
    Kobler, Oliver
    Voigt, Anne
    Durairaja, Archana
    Mancini, Nino
    Zlatic, Marta
    Truman, James W.
    Thum, Andreas S.
    Gerber, Bertram
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [58] A connectome and analysis of the adult Drosophila central brain
    Scheffer, Louis K.
    Xu, C. Shan
    Januszewski, Michal
    Lu, Zhiyuan
    Takemura, Shin-ya
    Hayworth, Kenneth J.
    Huang, Gary B.
    Shinomiya, Kazunori
    Maitlin-Shepard, Jeremy
    Berg, Stuart
    Clements, Jody
    Hubbard, Philip M.
    Katz, William T.
    Umayam, Lowell
    Zhao, Ting
    Ackerman, David
    Blakely, Tim
    Bogovic, John
    Dolafi, Tom
    Kainmueller, Dagmar
    Kawase, Takashi
    Khairy, Khaled A.
    Leavitt, Laramie
    Li, Peter H.
    Lindsey, Larry
    Neubarth, Nicole
    Olbris, Donald J.
    Otsuna, Hideo
    Trautman, Eric T.
    Ito, Masayoshi
    Bates, Alexander S.
    Goldammer, Jens
    Wolff, Tanya
    Svirskas, Robert
    Schlegel, Philipp
    Neace, Erika
    Knecht, Christopher J.
    Alvarado, Chelsea X.
    Bailey, Dennis A.
    Ballinger, Samantha
    Borycz, Jolanta A.
    Canino, Brandon S.
    Cheatham, Natasha
    Cook, Michael
    Dreher, Marisa
    Duclos, Octave
    Eubanks, Bryon
    Fairbanks, Kelli
    Finley, Samantha
    Forknall, Nora
    [J]. ELIFE, 2020, 9
  • [59] NMDA spikes in basal dendrites of cortical pyramidal neurons
    Schiller, J
    Major, G
    Koester, HJ
    Schiller, Y
    [J]. NATURE, 2000, 404 (6775) : 285 - 289
  • [60] Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/NMETH.2019, 10.1038/nmeth.2019]