Extracellular Vesicles and Cx43-Gap Junction Channels Are the Main Routes for Mitochondrial Transfer from Ultra-Purified Mesenchymal Stem Cells, RECs

被引:15
作者
Yang, Jiahao [1 ]
Liu, Lu [1 ]
Oda, Yasuaki [1 ]
Wada, Keisuke [1 ]
Ago, Mako [1 ]
Matsuda, Shinichiro [2 ]
Hattori, Miho [1 ]
Goto, Tsukimi [1 ]
Ishibashi, Shuichi [3 ]
Kawashima-Sonoyama, Yuki [1 ]
Matsuzaki, Yumi [4 ]
Taketani, Takeshi [1 ]
机构
[1] Shimane Univ, Fac Med, Dept Pediat, 89-1 Enya cho, Izumo 6938501, Japan
[2] Shimane Univ Hosp, Dept Med Oncol, 89-1 Enya cho, Izumo 6938501, Japan
[3] Shimane Univ, Fac Med, Dept Digest & Gen Surg, 89-1 Enya cho, Izumo 6938501, Japan
[4] Shimane Univ, Fac Med, Dept Life Sci, 89-1 Enya cho, Izumo 6938501, Japan
关键词
rapidly expanding clones (RECs); mesenchymal stem cells (MSCs); extracellular vesicles (Evs); Cx43-gap junction channels (Cx43-GJCs); mitochondrial transfer; TUNNELING NANOTUBES; STROMAL CELLS; DNA; CONNEXIN43; REPAIR; OVEREXPRESSION; CARDIOMYOCYTES; MODELS; ACTIN;
D O I
10.3390/ijms241210294
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are essential organelles for maintaining intracellular homeostasis. Their dysfunction can directly or indirectly affect cell functioning and is linked to multiple diseases. Donation of exogenous mitochondria is potentially a viable therapeutic strategy. For this, selecting appropriate donors of exogenous mitochondria is critical. We previously demonstrated that ultra-purified bone marrow-derived mesenchymal stem cells (RECs) have better stem cell properties and homogeneity than conventionally cultured bone marrow-derived mesenchymal stem cells. Here, we explored the effect of contact and noncontact systems on three possible mitochondrial transfer mechanisms involving tunneling nanotubes, connexin 43 (Cx43)-mediated gap junction channels (GJCs), and extracellular vesicles (Evs). We show that Evs and Cx43-GJCs provide the main mechanism for mitochondrial transfer from RECs. Through these two critical mitochondrial transfer pathways, RECs could transfer a greater number of mitochondria into mitochondria-deficient (& rho;(0)) cells and could significantly restore mitochondrial functional parameters. Furthermore, we analyzed the effect of exosomes (EXO) on the rate of mitochondrial transfer from RECs and recovery of mitochondrial function. REC-derived EXO appeared to promote mitochondrial transfer and slightly improve the recovery of mtDNA content and oxidative phosphorylation in & rho;(0) cells. Thus, ultrapure, homogenous, and safe stem cell RECs could provide a potential therapeutic tool for diseases associated with mitochondrial dysfunction.
引用
收藏
页数:22
相关论文
共 56 条
  • [1] Wiring through tunneling nanotubes - from electrical signals to organelle transfer
    Abounit, Saida
    Zurzolo, Chiara
    [J]. JOURNAL OF CELL SCIENCE, 2012, 125 (05) : 1089 - 1098
  • [2] Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome: Concise Review
    Abraham, Aswin
    Krasnodembskaya, Anna
    [J]. STEM CELLS TRANSLATIONAL MEDICINE, 2020, 9 (01) : 28 - 38
  • [3] Human Mesenchymal Stem Cells Reprogram Adult Cardiomyocytes Toward a Progenitor-Like State Through Partial Cell Fusion and Mitochondria Transfer
    Acquistapace, Adrien
    Bru, Thierry
    Lesault, Pierre-Francois
    Figeac, Florence
    Coudert, Amelie E.
    le Coz, Olivier
    Christov, Christo
    Baudin, Xavier
    Auber, Frederic
    Yiou, Rene
    Dubois-Rande, Jean-Luc
    Rodriguez, Anne-Marie
    [J]. STEM CELLS, 2011, 29 (05) : 812 - 824
  • [4] Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery
    Babenko, Valentina A.
    Silachev, Denis N.
    Popkov, Vasily A.
    Zorova, Ljubava D.
    Pevzner, Irina B.
    Plotnikov, Egor Y.
    Sukhikh, Gennady T.
    Zorov, Dmitry B.
    [J]. MOLECULES, 2018, 23 (03):
  • [5] Initiation and beyond: Multiple functions of the human mitochondril transcription machinery
    Bonawitz, Nicholas D.
    Clayton, David A.
    Shadel, Gerald S.
    [J]. MOLECULAR CELL, 2006, 24 (06) : 813 - 825
  • [6] Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin
    Boukelmoune, Nabila
    Chiu, Gabriel S.
    Kavelaars, Annemieke
    Heijnen, Cobi J.
    [J]. ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2018, 6 : 139
  • [7] MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function
    Caicedo, Andres
    Fritz, Vanessa
    Brondello, Jean-Marc
    Ayala, Mickael
    Dennemont, Indira
    Abdellaoui, Naoill
    de Fraipont, Florence
    Moisan, Anaick
    Prouteau, Claire Angebault
    Boukhaddaoui, Hassan
    Jorgensen, Christian
    Vignais, Marie-Luce
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [8] Mesenchymal Stem Cells Transfer Mitochondria to the Cells with Virtually No Mitochondrial Function but Not with Pathogenic mtDNA Mutations
    Cho, Young Min
    Kim, Ju Han
    Kim, Mingoo
    Park, Su Jin
    Koh, Sang Hyeok
    Ahn, Hyo Seop
    Kang, Gyeong Hoon
    Lee, Jung-Bin
    Park, Kyong Soo
    Lee, Hong Kyu
    [J]. PLOS ONE, 2012, 7 (03):
  • [9] Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections
    Cselenyak, Attila
    Pankotai, Eszter
    Horvath, Eszter M.
    Kiss, Levente
    Lacza, Zsombor
    [J]. BMC CELL BIOLOGY, 2010, 11
  • [10] Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells
    D'Souza, Anisha
    Burch, Amelia
    Dave, Kandarp M.
    Sreeram, Aravind
    Reynolds, Michael J.
    Dobbins, Duncan X.
    Kamte, Yashika S.
    Zhao, Wanzhu
    Sabatelle, Courtney
    Joy, Gina M.
    Soman, Vishal
    Chandran, Uma R.
    Shiva, Sruti S.
    Quillinan, Nidia
    Herson, Paco S.
    Manickam, Devika S.
    [J]. JOURNAL OF CONTROLLED RELEASE, 2021, 338 : 505 - 526