Vortex solutions for pseudo-relativistic Hartree equations

被引:1
作者
Yang, Jinge [1 ]
Yang, Jianfu [2 ]
机构
[1] Nanchang Inst Technol, Sch Sci, Nanchang 330099, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
pseudo-relativistic operator; vortex solution; asymptotic behavior; stability; COLLAPSE;
D O I
10.1088/1361-6544/acdb3c
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study k-vortex solutions of the form psi(t; x) = e(i(mu t+k theta(x1,x2)))u(x) of the pseudo-relativistic Hartree equation i psi(iota)(x,t) = (root-Delta+m2 - m) psi(xt) -(vertical bar x vertical bar-1 * vertical bar psi(x,t), (x,t) is an element of R-3 x R, (1) under the constraint integral(R3) vertical bar u vertical bar(2) dx = N: Such solutions are obtained as minimizers of the problem e(k)(N) = inf {E-k(u) : u is an element of H-s \ {0}; integral(R3) vertical bar u(x; 0)vertical bar(2) dx = N > 0} (2) with the associated functional E-k(u) of (1). We show that there is a threshold value N-c(k) > 0 such that problem (2) admits a nonnegative minimizer u(N) if 0 < N < Nc(k), and there exists no minimizer for e(k)(N) if N >= N-c(k). Moreover, the stability of the vortex solution is considered, and the limiting behavior of the minimizer u(N) as N -> N-c(k)(-) is described.
引用
收藏
页码:3939 / 3968
页数:30
相关论文
共 22 条
[2]  
Axler S., 2001, Graduate Texts in Mathematics
[3]  
Badiale M, 2008, ADV NONLINEAR STUD, V8, P817
[4]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[5]   An approach to symmetrization via polarization [J].
Brock, F ;
Solynin, AY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) :1759-1796
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrodinger equations [J].
Choi, Woocheol ;
Seok, Jinmyoung .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
[8]  
Elgart A., 2006, COMMUN PUR APPL MATH, V64, P3500
[9]   Uniqueness of Radial Solutions for the Fractional Laplacian [J].
Frank, Rupert L. ;
Lenzmann, Enno ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) :1671-1726
[10]   Boson stars as solitary waves [J].
Froehlich, Juerg ;
Jonsson, B. Lars G. ;
Lenzmann, Enno .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (01) :1-30