MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer

被引:12
|
作者
Li, Yu [1 ,2 ]
Sun, XueQin [1 ,2 ]
Wang, SuKai [1 ,2 ]
Li, XuRu [1 ,2 ]
Qin, YingWei [1 ,2 ]
Pan, JinXiao [1 ,2 ]
Chen, Ping [1 ,2 ]
机构
[1] North Univ China, Dept Informat & Commun Engn, Taiyuan, Peoples R China
[2] North Univ China, State Key Lab Elect Testing Technol, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography (CT); multi-domain optimization; sparse-view CT (SVCT) reconstruction; swin transformer; LOW-DOSE CT; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; NEURAL-NETWORK; FEW-VIEW; NET; MANIFOLD;
D O I
10.1088/1361-6560/acc2ab
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information. Approach. To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details. Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images. Significance. MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Sparse-view CT reconstruction with improved GoogLeNet
    Xie, Shipeng
    Zhang, Pengcheng
    Luo, Limin
    Li, Haibo
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [22] DdeNet: A dual-domain end-to-end network combining Pale-Transformer and Laplacian convolution for sparse view CT reconstruction
    Lin, Juncheng
    Li, Jialin
    Dou, Jiazhen
    Zhong, Liyun
    Di, Jianglei
    Qin, Yuwen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [23] Sparse-View Spectral CT Reconstruction and Material Decomposition Based on Multi-Channel SGM
    Liu, Yuedong
    Zhou, Xuan
    Wei, Cunfeng
    Xu, Qiong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (10) : 3425 - 3435
  • [24] Sparse-view CT reconstruction based on gradient directional total variation
    Qu, Zhaoyan
    Zhao, Xiaojie
    Pan, Jinxiao
    Chen, Ping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (05)
  • [25] Performance of sparse-view CT reconstruction with multi-directional gradient operators
    Hsieh, Chia-Jui
    Jin, Shih-Chun
    Chen, Jyh-Cheng
    Kuo, Chih-Wei
    Wang, Ruei-Teng
    Chu, Woei-Chyn
    PLOS ONE, 2019, 14 (01):
  • [26] DEEP BACK PROJECTION FOR SPARSE-VIEW CT RECONSTRUCTION
    Ye, Dong Hye
    Buzzard, Gregery T.
    Ruby, Max
    Bouman, Charles A.
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1 - 5
  • [27] An efficient dual-domain deep learning network for sparse-view CT reconstruction
    Sun, Chang
    Salimi, Yazdan
    Angeliki, Neroladaki
    Boudabbous, Sana
    Zaidi, Habib
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 256
  • [28] Optimization of sparse-view CT reconstruction based on convolutional neural network
    Lv, Liangliang
    Li, Chang
    Wei, Wenjing
    Sun, Shuyi
    Ren, Xiaoxuan
    Pan, Xiaodong
    Li, Gongping
    MEDICAL PHYSICS, 2025, : 2089 - 2105
  • [29] Progressively Prompt-Guided Models for Sparse-View CT Reconstruction
    Li, Jiajun
    Du, Wenchao
    Cui, Huanhuan
    Chen, Hu
    Zhang, Yi
    Yang, Hongyu
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2025, 9 (04) : 447 - 459
  • [30] REDAEP: Robust and Enhanced Denoising Autoencoding Prior for Sparse-View CT Reconstruction
    Zhang, Fengqin
    Zhang, Minghui
    Qin, Binjie
    Zhang, Yi
    Xu, Zichen
    Liang, Dong
    Liu, Qiegen
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (01) : 108 - 119