MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer

被引:15
作者
Li, Yu [1 ,2 ]
Sun, XueQin [1 ,2 ]
Wang, SuKai [1 ,2 ]
Li, XuRu [1 ,2 ]
Qin, YingWei [1 ,2 ]
Pan, JinXiao [1 ,2 ]
Chen, Ping [1 ,2 ]
机构
[1] North Univ China, Dept Informat & Commun Engn, Taiyuan, Peoples R China
[2] North Univ China, State Key Lab Elect Testing Technol, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography (CT); multi-domain optimization; sparse-view CT (SVCT) reconstruction; swin transformer; LOW-DOSE CT; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; NEURAL-NETWORK; FEW-VIEW; NET; MANIFOLD;
D O I
10.1088/1361-6560/acc2ab
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information. Approach. To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details. Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images. Significance. MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.
引用
收藏
页数:21
相关论文
共 59 条
[1]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[2]  
Cao H., 2023, COMPUTER VISION ECCV, P205, DOI 10.1007/978-3-031-25066-8_9
[3]   Disentangle, Align and Fuse for Multimodal and Semi-Supervised Image Segmentation [J].
Chartsias, Agisilaos ;
Papanastasiou, Giorgos ;
Wang, Chengjia ;
Semple, Scott ;
Newby, David E. ;
Dharmakumar, Rohan ;
Tsaftaris, Sotirios A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (03) :781-792
[4]  
Chen C-F., 2021, ARXIV COMPUT VIS PAT
[5]   LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT [J].
Chen, Hu ;
Zhang, Yi ;
Chen, Yunjin ;
Zhang, Junfeng ;
Zhang, Weihua ;
Sun, Huaiqiang ;
Lv, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1333-1347
[6]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[7]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[8]   Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior [J].
Chen, Yang ;
Gao, Dazhi ;
Nie, Cong ;
Luo, Limin ;
Chen, Wufan ;
Yin, Xindao ;
Lin, Yazhong .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (07) :495-500
[9]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306