A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems

被引:1
作者
Lei, Wenyu [1 ]
Piani, Stefano [2 ]
Farrell, Patricio [3 ]
Rotundo, Nella [4 ]
Heltai, Luca [5 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, 2006,Xiyuan Ave,West Hitech Zone, Chengdu 611731, Peoples R China
[2] SISSA Int Sch Adv Studies, Math Area, MathLab, via Bonomea 265, I-34136 Trieste, Italy
[3] Weierstrass Inst Berlin, Mohrenstr 39, D-10117 Berlin, Germany
[4] Ulisse Dini Univ Florence, Dipartimento Matemat & Informat, Viale Morgagni 67-A, I-50134 Florence, Italy
[5] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
基金
中国国家自然科学基金;
关键词
Finite element methods; Discontinuous Galerkin methods; Hybrid methods weighted norms; Exponential fitting methods; Convection-diffusion equations; Drift-diffusion problems; COMPLETE FLUX SCHEME; DEVICE EQUATIONS; SIMULATION;
D O I
10.1007/s10915-024-02481-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose a weighted hybridizable discontinuous Galerkin method (W-HDG) for drift-diffusion problems. By using specific exponential weights when computing the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} product in each cell of the discretization, we are able to mimic the behavior of the Slotboom variables, and eliminate the drift term from the local matrix contributions, while still solving the problem for the primal variables. We show that the proposed numerical scheme is well-posed, and validates numerically that it has the same properties as classical HDG methods, including optimal convergence, and superconvergence of postprocessed solutions. For polynomial degree zero, dimension one, and vanishing HDG stabilization parameter, W-HDG coincides with the Scharfetter-Gummel finite volume scheme (i.e., it produces the same system matrix). The use of local exponential weights generalizes the Scharfetter-Gummel scheme (the state-of-the-art for finite volume discretization of transport-dominated problems) to arbitrary high-order approximations.
引用
收藏
页数:26
相关论文
共 46 条
[31]  
Grisvard P, 2011, CLASS APPL MATH, V69, P1, DOI 10.1137/1.9781611972030
[32]   The complete flux scheme-Error analysis and application to plasma simulation [J].
Liu, L. ;
van Dijk, J. ;
Boonkkamp, J. H. M. ten Thije ;
Mihailova, D. B. ;
van der Mullen, J. J. A. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 250 :229-243
[33]  
Markowich P. A., 1986, STATIONARY SEMICONDU
[34]   EQUATIONS DESCRIBING STEADY-STATE CARRIER DISTRIBUTIONS IN A SEMICONDUCTOR DEVICE [J].
MOCK, MS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1972, 25 (06) :781-792
[35]  
Morton K. W., 1996, NUMERICAL SOLUTION C
[36]   An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations [J].
Nguyen, N. C. ;
Peraire, J. ;
Cockburn, B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (09) :3232-3254
[37]  
Roos HG, 2008, SPR SER COMPUT MATH, V24, P1
[38]   LARGE-SIGNAL ANALYSIS OF A SILICON READ DIODE OSCILLATOR [J].
SCHARFETTER, DL ;
GUMMEL, HK .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1969, ED16 (01) :64-+
[39]  
Shewchuk J. R., TRIANGLE 2 DIMENSION
[40]   TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator [J].
Si, Hang .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2015, 41 (02)