A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems

被引:1
作者
Lei, Wenyu [1 ]
Piani, Stefano [2 ]
Farrell, Patricio [3 ]
Rotundo, Nella [4 ]
Heltai, Luca [5 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, 2006,Xiyuan Ave,West Hitech Zone, Chengdu 611731, Peoples R China
[2] SISSA Int Sch Adv Studies, Math Area, MathLab, via Bonomea 265, I-34136 Trieste, Italy
[3] Weierstrass Inst Berlin, Mohrenstr 39, D-10117 Berlin, Germany
[4] Ulisse Dini Univ Florence, Dipartimento Matemat & Informat, Viale Morgagni 67-A, I-50134 Florence, Italy
[5] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
基金
中国国家自然科学基金;
关键词
Finite element methods; Discontinuous Galerkin methods; Hybrid methods weighted norms; Exponential fitting methods; Convection-diffusion equations; Drift-diffusion problems; COMPLETE FLUX SCHEME; DEVICE EQUATIONS; SIMULATION;
D O I
10.1007/s10915-024-02481-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose a weighted hybridizable discontinuous Galerkin method (W-HDG) for drift-diffusion problems. By using specific exponential weights when computing the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} product in each cell of the discretization, we are able to mimic the behavior of the Slotboom variables, and eliminate the drift term from the local matrix contributions, while still solving the problem for the primal variables. We show that the proposed numerical scheme is well-posed, and validates numerically that it has the same properties as classical HDG methods, including optimal convergence, and superconvergence of postprocessed solutions. For polynomial degree zero, dimension one, and vanishing HDG stabilization parameter, W-HDG coincides with the Scharfetter-Gummel finite volume scheme (i.e., it produces the same system matrix). The use of local exponential weights generalizes the Scharfetter-Gummel scheme (the state-of-the-art for finite volume discretization of transport-dominated problems) to arbitrary high-order approximations.
引用
收藏
页数:26
相关论文
共 46 条
[1]   Modelling charge transport in perovskite solar cells: Potential-based and limiting ion depletion [J].
Abdel, Dilara ;
Vagner, Petr ;
Fuhrmann, Juergen ;
Farrell, Patricio .
ELECTROCHIMICA ACTA, 2021, 390
[2]   Elliptic partial differential-algebraic multiphysics models in electrical network design [J].
Alì, G ;
Bartel, A ;
Günther, M ;
Tischendorf, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (09) :1261-1278
[3]   An existence result for elliptic partial differential-algebraic equations arising in semiconductor modeling [J].
Ali, Giuseppe ;
Rotundo, Nella .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4666-4681
[4]   The deal. II library, Version 9.3 [J].
Arndt, Daniel ;
Bangerth, Wolfgang ;
Blais, Bruno ;
Fehling, Marc ;
Gassmoller, Rene ;
Heister, Timo ;
Heltai, Luca ;
Koecher, Uwe ;
Kronbichler, Martin ;
Maier, Matthias ;
Munch, Peter ;
Pelteret, Jean-Paul ;
Proell, Sebastian ;
Simon, Konrad ;
Turcksin, Bruno ;
Wells, David ;
Zhang, Jiaqi .
JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (03) :171-186
[5]   The DEAL.II finite element library: Design, features, and insights [J].
Arndt, Daniel ;
Bangerth, Wolfgang ;
Davydov, Denis ;
Heister, Timo ;
Heltai, Luca ;
Kronbichler, Martin ;
Maier, Matthias ;
Pelteret, Jean-Paul ;
Turcksin, Bruno ;
Wells, David .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 :407-422
[6]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[7]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[8]   A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme [J].
Bessemoulin-Chatard, Marianne .
NUMERISCHE MATHEMATIK, 2012, 121 (04) :637-670
[9]   The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations [J].
Boonkkamp, J. H. M. Ten Thije ;
Anthonissen, M. J. H. .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) :47-70
[10]   AN EXPONENTIAL FITTING SCHEME FOR THE ELECTROTHERMAL DEVICE EQUATIONS SPECIFICALLY FOR THE SIMULATION OF AVALANCHE GENERATION [J].
BOONKKAMP, JHMT ;
SCHILDERS, WHA .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1993, 12 (02) :95-111