共 50 条
Multistaged In Silico Discovery of the Best SARS-CoV-2 Main Protease Inhibitors amongst 3009 Clinical and FDA-Approved Compounds
被引:3
|作者:
Eissa, Ibrahim H.
[1
]
Saleh, Abdulrahman M.
[1
]
Al-Rashood, Sara T.
[2
]
El-Attar, Abdul-Aziz M. M.
[3
]
Metwaly, Ahmed M.
[4
,5
]
机构:
[1] Al Azhar Univ, Fac Pharm Boys, Pharmaceut Med Chem & Drug Design Dept, Cairo 11884, Egypt
[2] King Saud Univ, Coll Pharm, Dept Pharmaceut Chem, PO Box 2457, Riyadh 11451, Saudi Arabia
[3] Al Azhar Univ, Fac Pharm, Pharmaceut Analyt Chem Dept, Cairo 11884, Egypt
[4] Al Azhar Univ, Fac Pharm Boys, Pharmacognosy & Med Plants Dept, Cairo 11884, Egypt
[5] City Sci Res & Technol Applicat SRTA City, Biopharmaceut Prod Res Dept, Genet Engn & Biotechnol Res Inst, Alexandria 21934, Egypt
关键词:
MOLECULAR-DYNAMICS;
FINGERPRINTS;
SIMULATIONS;
PERFORMANCE;
STRATEGIES;
DOCKING;
3D-QSAR;
CHARMM;
GUI;
D O I:
10.1155/2024/5084553
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
As a follow-up to our teamwork's former work against SARS-CoV-2, eight compounds (ramelteon (68), prilocaine (224), nefiracetam (339), cyclandelate (911), mepivacaine (2325), ropivacaine (2351), tasimelteon (2384), and levobupivacaine (2840)) were revealed as the best potentially active SARS-CoV-2 inhibitors targeting the main protease (PDB ID: 5R84), M-pro. The compounds were named in the midst of 3009 FDA and clinically approved compounds employing a multistaged in silico method. A molecular fingerprints study with GWS, the cocrystallized ligand of the M-pro, indicated the resemblance of 150 candidates. Consequently, a structure similarity experiment disclosed the best twenty-nine analogous. Then, molecular docking studies were done against the M-pro active site and showed the binding of the best compounds. Next, a 3D-pharmacophore study confirmed the obtained results for the eight compounds by exhibiting relative fit values of more than 90% (except for 68, 74%, and 2384, 83%). Levobupivacaine (2840) showed the most accurate docking and pharmacophore scores and was picked for further MD simulations experiments (RMSD, RMSF, R-g, SASA, and H-H bonding) over 100 ns. The MD simulations results revealed the accurate binding as well as the optimum dynamics of the M-pro-levobupivacaine complex. Finally, MM-PBSA studies were conducted and indicated the favorable bonding of the M-pro-levobupivacaine complex with a free energy value of -235 kJ/mol. The fulfilled outcomes hold out hope of beating COVID-19 through more in vitro and in vivo research for the named compounds.
引用
收藏
页数:19
相关论文