Multistaged In Silico Discovery of the Best SARS-CoV-2 Main Protease Inhibitors amongst 3009 Clinical and FDA-Approved Compounds

被引:3
|
作者
Eissa, Ibrahim H. [1 ]
Saleh, Abdulrahman M. [1 ]
Al-Rashood, Sara T. [2 ]
El-Attar, Abdul-Aziz M. M. [3 ]
Metwaly, Ahmed M. [4 ,5 ]
机构
[1] Al Azhar Univ, Fac Pharm Boys, Pharmaceut Med Chem & Drug Design Dept, Cairo 11884, Egypt
[2] King Saud Univ, Coll Pharm, Dept Pharmaceut Chem, PO Box 2457, Riyadh 11451, Saudi Arabia
[3] Al Azhar Univ, Fac Pharm, Pharmaceut Analyt Chem Dept, Cairo 11884, Egypt
[4] Al Azhar Univ, Fac Pharm Boys, Pharmacognosy & Med Plants Dept, Cairo 11884, Egypt
[5] City Sci Res & Technol Applicat SRTA City, Biopharmaceut Prod Res Dept, Genet Engn & Biotechnol Res Inst, Alexandria 21934, Egypt
关键词
MOLECULAR-DYNAMICS; FINGERPRINTS; SIMULATIONS; PERFORMANCE; STRATEGIES; DOCKING; 3D-QSAR; CHARMM; GUI;
D O I
10.1155/2024/5084553
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a follow-up to our teamwork's former work against SARS-CoV-2, eight compounds (ramelteon (68), prilocaine (224), nefiracetam (339), cyclandelate (911), mepivacaine (2325), ropivacaine (2351), tasimelteon (2384), and levobupivacaine (2840)) were revealed as the best potentially active SARS-CoV-2 inhibitors targeting the main protease (PDB ID: 5R84), M-pro. The compounds were named in the midst of 3009 FDA and clinically approved compounds employing a multistaged in silico method. A molecular fingerprints study with GWS, the cocrystallized ligand of the M-pro, indicated the resemblance of 150 candidates. Consequently, a structure similarity experiment disclosed the best twenty-nine analogous. Then, molecular docking studies were done against the M-pro active site and showed the binding of the best compounds. Next, a 3D-pharmacophore study confirmed the obtained results for the eight compounds by exhibiting relative fit values of more than 90% (except for 68, 74%, and 2384, 83%). Levobupivacaine (2840) showed the most accurate docking and pharmacophore scores and was picked for further MD simulations experiments (RMSD, RMSF, R-g, SASA, and H-H bonding) over 100 ns. The MD simulations results revealed the accurate binding as well as the optimum dynamics of the M-pro-levobupivacaine complex. Finally, MM-PBSA studies were conducted and indicated the favorable bonding of the M-pro-levobupivacaine complex with a free energy value of -235 kJ/mol. The fulfilled outcomes hold out hope of beating COVID-19 through more in vitro and in vivo research for the named compounds.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Discovery of 2-thiobenzimidazoles as noncovalent inhibitors of SARS-CoV-2 main protease
    Deodato, Davide
    Asad, Nadeem
    Dore, Timothy M.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2022, 72
  • [22] Exploring the in-silico approach for assessing the potential of natural compounds as a SARS-CoV-2 main protease inhibitors
    Patel, Ashish
    Patel, Alkesh
    Hemani, Rahul
    Solanki, Riddhi
    Kansara, Janki
    Patel, Gargi
    Pradhan, Sayantan
    Bambharoliya, Tushar
    ORGANIC COMMUNICATIONS, 2021, 14 (01) : 58 - 72
  • [23] Allosteric inhibitors of the main protease of SARS-CoV-2
    Samrat, Subodh Kumar
    Xu, Jimin
    Xie, Xuping
    Gianti, Eleonora
    Chen, Haiying
    Zou, Jing
    Pattis, Jason G.
    Elokely, Khaled
    Lee, Hyun
    Li, Zhong
    Klein, Michael L.
    Shi, Pei-Yong
    Zhou, Jia
    Li, Hongmin
    ANTIVIRAL RESEARCH, 2022, 205
  • [24] A Computer-Aided Approach for the Discovery of D-Peptides as Inhibitors of SARS-CoV-2 Main Protease
    Hernandez Gonzalez, Jorge E.
    Eberle, Raphael J.
    Willbold, Dieter
    Coronado, Monika A.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 8
  • [25] Computational discovery of small drug-like compounds as potential inhibitors of SARS-CoV-2 main protease
    Andrianov, Alexander M.
    Kornoushenko, Yuri V.
    Karpenko, Anna D.
    Bosko, Ivan P.
    Tuzikov, Alexander V.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (15) : 5779 - 5791
  • [26] Insect protease inhibitors; promising inhibitory compounds against SARS-CoV-2 main protease
    Hemmati, Seyed Ali
    Tabein, Saeid
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142
  • [27] In silico discovery of novel inhibitors from Northern African natural products database against main protease (Mpro) of SARS-CoV-2
    Byadi, Said
    Oblak, Domen
    Kassmi, Yassine
    Sadik, Karima
    Hachim, Mouhi Eddine
    Podlipnik, Crtomir
    Aboulmouhajir, Aziz
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (07) : 2900 - 2910
  • [28] In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease
    So, Yuri Alves de Oliveira
    Bezerra, Katyanna Sales
    Gargano, Ricardo
    Mendonca, Fabio L. L.
    Souto, Janeusa Trindade
    Fulco, Umberto L.
    Pereira Jr, Marcelo Lopes
    Ribeiro Jr, Luiz Antonio
    BIOMOLECULES, 2024, 14 (07)
  • [29] Apigenin analogues as SARS-CoV-2 main protease inhibitors: In-silico screening approach
    Farhat, Ameny
    Ben Hlima, Hajer
    Khemakhem, Bassem
    Ben Halima, Youssef
    Michaud, Philippe
    Abdelkafi, Slim
    Fendri, Imen
    BIOENGINEERED, 2022, 13 (02) : 3350 - 3361
  • [30] Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro)
    Sayed, Ahmed M.
    Alhadrami, Hani A.
    El-Gendy, Ahmed O.
    Shamikh, Yara, I
    Belbahri, Lassaad
    Hassan, Hossam M.
    Abdelmohsen, Usama Ramadan
    Rateb, Mostafa E.
    MICROORGANISMS, 2020, 8 (07) : 1 - 17