Global energy conservation for distributional solutions to incompressible Hall-MHD equations without resistivity

被引:11
作者
Wu, Fan [1 ]
机构
[1] Nanchang Inst Technol, Coll Sci, Nanchang 330099, Jiangxi, Peoples R China
关键词
Energy conservation; Non-resistive Hall-MHD system; Distributional solutions; Leray-Hopf weak solution; LOCAL EXISTENCE; UNIQUENESS; WAVES;
D O I
10.2298/FIL2328741W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the global energy conservation for distributional solutions to incompressible Hall-MHD equations without resistivity. Motivated by the works of Tan and Wu in [arXiv:2111.13547v2] and Wu in [J. Math. Fluid Mech. 24,111 (2022)], we establish the energy balance for a distributional solution in whole spaces Rd(d >_ 2) provided that u, b E L4L4 and Vb E La L a. Moreover, as a corollary, we also obtain the energy conservation criterion for a Leray-Hopf weak solution.
引用
收藏
页码:9741 / 9751
页数:11
相关论文
共 38 条
[11]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[12]   On the energy equality of Navier-Stokes equations in general unbounded domains [J].
Farwig, Reinhard ;
Taniuchi, Yasushi .
ARCHIV DER MATHEMATIK, 2010, 95 (05) :447-456
[13]   Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (02) :677-691
[14]   Higher order commutator estimates and local existence for the non-resistive MHD equations and related models [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (04) :1035-1056
[15]  
Foias C., 1961, Bull. Soc. Math. France, V89, P1, DOI [10.24033/bsmf.1557, DOI 10.24033/BSMF.1557]
[16]   ON THE ENERGY EQUALITY FOR DISTRIBUTIONAL SOLUTIONS TO NAVIER-STOKES EQUATIONS [J].
Galdi, Giovanni P. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (02) :785-792
[17]  
Hopf E., 1951, Math. Nachr, V4, P213, DOI [10.1002/mana.3210040121, DOI 10.1002/MANA.3210040121]
[18]   Mathematical results related to a two-dimensional magneto-hydrodynamic equations [J].
Jiu, Quansen ;
Niu, Dongjuan .
ACTA MATHEMATICA SCIENTIA, 2006, 26 (04) :744-756
[19]   Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations [J].
Kang, Lingping ;
Deng, Xuemei ;
Bie, Qunyi .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
[20]  
Ladyzhenskaia O.A., 1988, LINEAR QUASILINEAR E