Global energy conservation for distributional solutions to incompressible Hall-MHD equations without resistivity

被引:8
作者
Wu, Fan [1 ]
机构
[1] Nanchang Inst Technol, Coll Sci, Nanchang 330099, Jiangxi, Peoples R China
关键词
Energy conservation; Non-resistive Hall-MHD system; Distributional solutions; Leray-Hopf weak solution; LOCAL EXISTENCE; UNIQUENESS; WAVES;
D O I
10.2298/FIL2328741W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the global energy conservation for distributional solutions to incompressible Hall-MHD equations without resistivity. Motivated by the works of Tan and Wu in [arXiv:2111.13547v2] and Wu in [J. Math. Fluid Mech. 24,111 (2022)], we establish the energy balance for a distributional solution in whole spaces Rd(d >_ 2) provided that u, b E L4L4 and Vb E La L a. Moreover, as a corollary, we also obtain the energy conservation criterion for a Leray-Hopf weak solution.
引用
收藏
页码:9741 / 9751
页数:11
相关论文
共 38 条
[1]   On the Regularity Criterion on One Velocity Component for the Micropolar Fluid Equations [J].
Agarwal, Ravi P. ;
Alghamdi, Ahmad M. ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
MATHEMATICAL MODELLING AND ANALYSIS, 2023, 28 (02) :271-284
[2]   Global Regularity for the 3D Micropolar Fluid Flows [J].
Alghamdi, Ahmad M. ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
FILOMAT, 2022, 36 (06) :1967-1970
[4]   Mathematics and turbulence: where do we stand? [J].
Bardos, Claude W. ;
Titi, Edriss S. .
JOURNAL OF TURBULENCE, 2013, 14 (03) :42-76
[5]   On the energy equality for the 3D Navier-Stokes equations [J].
Berselli, Luigi C. ;
Chiodaroli, Elisabetta .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
[6]  
Cabannes H, 1970, Theoretical magnetofluiddynamics
[7]   On hydromagnetic waves in atmospheres with application to the Sun [J].
Campos, LMBC .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1998, 10 (1-4) :37-70
[8]   Local existence for the non-resistive MHD equations in Besov spaces [J].
Chemin, Jean-Yves ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ADVANCES IN MATHEMATICS, 2016, 286 :1-31
[9]   ENERGY EQUALITY IN COMPRESSIBLE FLUIDS WITH PHYSICAL BOUNDARIES [J].
Chen, Ming ;
Liang, Zhilei ;
Wang, Dehua ;
Xu, Runzhang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) :1363-1385
[10]   On the Energy Equality for Weak Solutions of the 3D Navier-Stokes Equations [J].
Cheskidov, Alexey ;
Friedlander, Susan ;
Shvydkoy, Roman .
ADVANCES IN MATHEMATICAL FLUID MECHANICS: DEDICATED TO GIOVANNI PAOLO GALDI ON THE OCCASION OF HIS 60TH BIRTHDAY, INTERNATIONAL CONFERENCE ON MATHEMATICAL FLUID MECHANICS, 2007, 2010, :171-+