Identification of MISO Hammerstein Nonlinear Model with Moving Average Noise Based on Hybrid Signal

被引:0
作者
Zhao, Caiting [1 ]
Ding, Zhenyu [1 ]
Li, Feng [1 ]
机构
[1] Jiangsu Univ Technol, Coll Elect & Informat Engn, Changzhou 213001, Jiangsu, Peoples R China
来源
2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS | 2023年
基金
中国国家自然科学基金;
关键词
Hammerstein model; parameter identification; correlation analysis method; multi-input single-output; SYSTEMS;
D O I
10.1109/DDCLS58216.2023.10166765
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The hybrid signal is used to identify the multi-input single-output (MISO) Hammerstein model. The hybrid signal consists of Gaussian signal and random signal, and the identification process is divided into two stages, namely, the stage of dynamic linear part and the stage of static nonlinear part. Firstly, the correlation analysis method is used to identify the linear part parameters. Then, for the parameters of the nonlinear part and the output noise model, an extended stochastic gradient algorithm with forgetting factor (FF-ESG) is adopted to deal with the issue that the convergence of stochastic gradient algorithm is slow. Theoretical analysis and experiments show that the presented method can identify the MISO Hammerstein model with moving average noise and obtain good identification accuracy.
引用
收藏
页码:1604 / 1607
页数:4
相关论文
共 50 条
[21]   Identification of nonlinear process described by neural fuzzy Hammerstein-Wiener model using multi-signal processing [J].
Feng Li ;
Li Jia ;
Ya Gu .
Advances in Manufacturing, 2023, 11 :694-707
[22]   Parameter identification for Hammerstein nonlinear system with polynomial and state space model [J].
Li, Chenghao ;
Li, Feng ;
Cao, Qingfeng .
MEASUREMENT & CONTROL, 2023, 56 (1-2) :327-336
[23]   Identification and nonlinear model predictive control of MIMO Hammerstein system with constraints [J].
Da-zi Li ;
Yuan-xin Jia ;
Quan-shan Li ;
Qi-bing Jin .
Journal of Central South University, 2017, 24 :448-458
[24]   Identification and nonlinear model predictive control of MIMO Hammerstein system with constraints [J].
李大字 ;
贾元昕 ;
李全善 ;
靳其兵 .
JournalofCentralSouthUniversity, 2017, 24 (02) :448-458
[25]   Nonlinear Hammerstein Model Identification of SOFC using Improved GEO Algorithm [J].
Huo, Haibo ;
Wu, Yanxiang ;
Wang, Weihong ;
Kuang, Xinghong ;
Gan, Shihong ;
Liu, Yuqing .
2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, :5767-5773
[26]   Nonlinear system identification using butterfly optimisation algorithm and Hammerstein model [J].
Singh, Sandeep ;
Rawat, Tarun Kumar ;
Ashok, Alaknanda .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 42 (02) :171-179
[27]   Identification of MISO Hammerstein system using sparse multiple kernel-based hierarchical mixture prior and variational Bayesian inference [J].
Chen, Xiaolong ;
Chai, Yi ;
Liu, Qie ;
Huang, Pengfei ;
Fan, Linchuan .
ISA TRANSACTIONS, 2023, 137 :323-338
[28]   Identification and nonlinear model predictive control of MIMO Hammerstein system with constraints [J].
Li Da-zi ;
Jia Yuan-xin ;
Li Quan-shan ;
Jin Qi-bing .
JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2017, 24 (02) :448-458
[29]   A new identification method for Hammerstein model based on PSO [J].
Lin, Weixing ;
Zhang, Huidi ;
Liu, Peter X. .
IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, :2184-+
[30]   Hammerstein model identification method based on genetic programming [J].
Hatanaka, T ;
Uosaki, K .
PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, :1430-1435