Study on Thermal Runaway Risk Prevention of Lithium-Ion Battery with Composite Phase Change Materials

被引:3
|
作者
Zhang, Kai [1 ]
Wang, Lu [1 ]
Xu, Chenbo [1 ]
Wu, Hejun [1 ]
Huang, Dongmei [2 ]
Jin, Kan [2 ]
Xu, Xiaomeng [2 ]
机构
[1] State Grid Zhejiang Elect Power Co Ltd, Econ & Technol Res Inst, Hangzhou 310016, Peoples R China
[2] China Jiliang Univ, Coll Qual & Safety Engn, Hangzhou 310018, Peoples R China
来源
FIRE-SWITZERLAND | 2023年 / 6卷 / 05期
基金
中国国家自然科学基金;
关键词
lithium-ion battery; thermal runaway risk; safety; composite phase change material; temperature; CELLS; STABILITY;
D O I
10.3390/fire6050208
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
To reduce the thermal runaway risk of lithium-ion batteries, a good thermal management system is critically required. As phase change materials can absorb a lot of heat without the need for extra equipment, they are employed in the thermal management of batteries. The thermal management of a Sanyo 26,650 battery was studied in this work by using different composite phase change materials (CPCMs) at different charge-discharge rates. The thorough analysis on the thermal conductivity of CPCMs and the effect of CPCMs was conducted on the maximum surface temperature while charging and discharging. The findings demonstrate the ability of the composite thermal conductivity filler to increase thermal conductivity. It is increased to 1.307 W/(m K) as the ratio of silica and graphene is 1:1 (CPCM-3). The CPCMs can reduce the surface temperature of the cell, and the cooling effect of CPCM-3 is the most obvious, which can reduce the maximum temperature of the cell surface by 13.7 degrees C and 19 degrees C under 2 C and 3 C conditions. It is also found that the risk of thermal runaway of batteries under CPCMs thermal management is effectively reduced, ensuring the safe operation of the battery. This research can assist in the safe application of batteries and the development of new energy sources.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [2] Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials
    Chen, Mingyi
    Zhu, Minghao
    Zhang, Siyu
    Ouyang, Dongxu
    Weng, Jingwen
    Wei, Ruichao
    Chen, Yin
    Zhao, Luyao
    Wang, Jian
    APPLIED THERMAL ENGINEERING, 2023, 235
  • [3] Impact of dual nano-enhanced phase change materials on mitigating thermal runaway in lithium-ion battery cell
    Shivram, S.
    Harish, R.
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 60
  • [4] Flame retardant composite phase change materials with MXene for lithium-ion battery thermal management systems
    Wang, Yuqi
    Zhao, Luyao
    Zhan, Wang
    Chen, Yin
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [5] Phase change materials for lithium-ion battery thermal management systems: A review
    Li, Zaichao
    Zhang, Yuang
    Zhang, Shufen
    Tang, Bingtao
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [6] Thermal management performance of lithium-ion battery based on phase change materials
    Yin S.
    Kang P.
    Han J.
    Zhang C.
    Wang L.
    Tong L.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (10): : 5518 - 5529
  • [7] Numerical Study on the Inhibition Control of Lithium-Ion Battery Thermal Runaway
    Hu, Hao
    Xu, Xiaoming
    Sun, Xudong
    Li, Renzheng
    Zhang, Yangjun
    Fu, Jiaqi
    ACS OMEGA, 2020, 5 (29): : 18254 - 18261
  • [8] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):
  • [9] Review on the Lithium-Ion Battery Thermal Management System Based on Composite Phase Change Materials: Progress and Outlook
    Yang, Hanxue
    Zhang, Guanhua
    Dou, Binlin
    Yan, Xiaoyu
    Lu, Wei
    Wu, Zhigen
    Yang, Qiguo
    ENERGY & FUELS, 2024, 38 (04) : 2573 - 2600
  • [10] Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials
    Xie, Yongqi
    Tang, Jincheng
    Shi, Shang
    Xing, Yuming
    Wu, Hongwei
    Hu, Zhongliang
    Wen, Dongsheng
    ENERGY CONVERSION AND MANAGEMENT, 2017, 154 : 562 - 575