Wrap-around sensors for electrical detection of particles in microfluidic channels

被引:7
作者
Civelekoglu, Ozgun [1 ]
Liu, Ruxiu [1 ]
Asmare, Norh [1 ]
Arifuzzman, A. K. M. [1 ]
Sarioglu, A. Fatih [1 ,2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, GA, North Ave NW, Atlanta, GA 30332 USA
[2] Inst Elect & Nanotechnol, Georgia Inst Technol, Atlanta, GA 30332 USA
[3] Parker H Petit Inst Bioengn & Biosci, Georgia Inst Technol, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Microfluidic impedance spectroscopy; 3D electrodes; Microfabrication; Soft lithography; ELECTRODE NETWORKS; FLOW-CYTOMETRY; DESIGN; CHIP;
D O I
10.1016/j.snb.2022.132874
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microfluidic devices with integrated electrical sensors have been widely employed in the detection and characterization of particles suspended in liquids. Conventionally, electrical sensors in microfluidic devices are composed of electrodes all patterned on the same surface in a coplanar arrangement. While simplifying the fabrication of electrical sensors within microfluidic channels considerably, the use of coplanar electrodes leads to non-uniform electric fields within the channel and complicates scaling of electrical sensor networks by constraining the routing of different traces within the same plane. The alternative of integrating counter-facing parallel electrodes into microfluidic channels to alleviate those limitations requires a complex fabrication process. In this work, we present a robust and straightforward approach to creating 3D electrical sensors in microfluidic devices fabricated using soft lithography. By placing a blanket electrode on the microfluidic channel walls, our electrical sensor wraps around the flow channel to (i) provide higher sensitivity than their coplanar counterparts, (ii) extend the sensing volume beyond the vicinity of a surface and (iii) simplify the creation of electrical sensor networks with complex geometries by relaxing the routing constraints on traces. Practical implementation of 3D electrical sensors in microfluidic channels offers the potential to enhance the utility of electrical sensing without impacting the frugality of fluidic components in designing integrated microfluidic systems as quantitative platforms.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Patterning of platinum microelectrodes in polymeric microfluidic chips [J].
Al Mamun, Nazmul Huda ;
Dutta, Prashanta .
JOURNAL OF MICROLITHOGRAPHY MICROFABRICATION AND MICROSYSTEMS, 2006, 5 (03)
[2]  
[Anonymous], 2006, BIOMEMS BIOMED NANOT
[3]   Atomically flat gold on elastomeric substrate [J].
Atmaja, B ;
Frommer, J ;
Scott, JC .
LANGMUIR, 2006, 22 (10) :4734-4740
[4]   Simultaneous electrical detection of IL-6 and PCT using a microfluidic biochip platform [J].
Berger, Jacob ;
Valera, Enrique ;
Jankelow, Aaron ;
Garcia, Carlos ;
Akhand, Manik ;
Heredia, John ;
Ghonge, Tanmay ;
Liu, Cynthia ;
Font-Bartumeus, Victor ;
Oshana, Gina ;
Tiao, Justin ;
Bashir, Rashid .
BIOMEDICAL MICRODEVICES, 2020, 22 (02)
[5]   Analysis of bacteria-derived outer membrane vesicles using tunable resistive pulse sensing [J].
Bogomolny, Evgeny ;
Hong, Jiwon ;
Blenkiron, Cherie ;
Simonov, Denis ;
Dauros, Priscila ;
Swift, Simon ;
Phillips, Anthony ;
Willmott, Geoff R. .
COLLOIDAL NANOPARTICLES FOR BIOMEDICAL APPLICATIONS X, 2015, 9338
[6]   Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl) trimethoxysilane (MPTMS) as a molecular adhesive [J].
Byun, Ikjoo ;
Coleman, Anthony W. ;
Kim, Beomjoon .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (08)
[7]   EIT-Inspired Microfluidic Cytometer for Single-Cell Dielectric Spectroscopy [J].
Caselli, Federica ;
Bisegna, Paolo ;
Maceri, Franco .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2010, 19 (05) :1029-1040
[8]   Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation [J].
Cheung, K ;
Gawad, S ;
Renaud, P .
CYTOMETRY PART A, 2005, 65A (02) :124-132
[9]   Microfluidic Impedance-Based Flow Cytometry [J].
Cheung, Karen C. ;
Di Berardino, Marco ;
Schade-Kampmann, Grit ;
Hebeisen, Monika ;
Pierzchalski, Arkadiusz ;
Bocsi, Jozsef ;
Mittag, Anja ;
Tarnok, Attila .
CYTOMETRY PART A, 2010, 77A (07) :648-666
[10]   Automated lightless cytometry on a microchip with adaptive immunomagnetic manipulation [J].
Civelekoglu, Ozgun ;
Wang, Ningquan ;
Arifuzzman, A. K. M. ;
Boya, Mert ;
Sarioglu, A. Fatih .
BIOSENSORS & BIOELECTRONICS, 2022, 203