Deconvoluting Slurry Rheology from Binder Performance in Si-Based Anodes

被引:2
作者
Jiang, Hairui [1 ]
Wei, Congxiao [1 ]
Yasmin, S. [1 ]
Obrovac, M. N. [1 ,2 ,3 ]
机构
[1] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[3] Dalhousie Univ, Clean Technol Res Inst, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
batteries; -; Li-ion; silicon; electrode binders; poly(acrylic acid); CYCLING PERFORMANCE; MOLECULAR-WEIGHT; LI; LITHIUM; ACID;
D O I
10.1149/1945-7111/ad136f
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A systematic investigation was undertaken on the effect of sodium poly(acrylic acid) (NaPAA) binder molecular weight on silicon monoxide cycling performance. It was found that cycling performance was poor for low molecular weight binder, however this was primarily related to poor slurry rheology. We found that if propylene glycol is used instead of water as a slurry solvent, it can take over the role of viscosity modifier from the binder. When propylene glycol is used as a solvent for slurries with low MW NaPAA binders (e.g. 1.5 k NaPAA), the cycling outperformance of the resulting SiO electrodes outperforms conventionally made SiO electrodes with high molecular weight binder (e.g. 250 k NaPAA). These results show that binder molecular weight only affects the cycling performance of Si-alloy based electrodes because of its role as a slurry viscosity modifier. If propylene glycol is used to increase slurry viscosity, then the molecular weight has little effect.
引用
收藏
页数:7
相关论文
共 20 条
[1]   Electrochemistry and Thermal Behavior of SiOxMade by Reactive Gas Milling [J].
Cao, Yidan ;
Dunlap, R. A. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (11)
[2]  
Fakirov S., 2017, Fundamentals of Polymer Science for Engineers, DOI [10.1002/9783527802180, DOI 10.1002/9783527802180]
[3]   Fatty Acids and Their Metal Salts: A Review of Their Infrared Spectra in Light of Their Presence in Cultural Heritage [J].
Filopoulou, Anna ;
Vlachou, Sophia ;
Boyatzis, Stamatis C. .
MOLECULES, 2021, 26 (19)
[4]   Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders [J].
Han, Zhen-Ji ;
Yamagiwa, Kiyofumi ;
Yabuuchi, Naoaki ;
Son, Jin-Young ;
Cui, Yi-Tao ;
Oji, Hiroshi ;
Kogure, Akinori ;
Harada, Takahiro ;
Ishikawa, Sumihisa ;
Aoki, Yasuhito ;
Komaba, Shinichi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (05) :3783-3795
[5]   Phenolic Resin as an Inexpensive High Performance Binder for Li-Ion Battery Alloy Negative Electrodes [J].
Hatchard, T. D. ;
Bissonnette, P. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) :A2035-A2039
[6]   The existence of optimal molecular weight for poly(acrylic acid) binders in silicon/graphite composite anode for lithium-ion batteries [J].
Hu, Bin ;
Shkrob, Ilya A. ;
Zhang, Shuo ;
Zhang, Linghong ;
Zhang, Jingjing ;
Li, Yan ;
Liao, Chen ;
Zhang, Zhengcheng ;
Lu, Wenquan ;
Zhang, Lu .
JOURNAL OF POWER SOURCES, 2018, 378 :671-676
[7]   A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes [J].
Karkar, Z. ;
Guyomard, D. ;
Roue, L. ;
Lestriez, B. .
ELECTROCHIMICA ACTA, 2017, 258 :453-466
[8]   Influence of the Molecular Weight of Poly-Acrylic Acid Binder on Performance of Si-Alloy/Graphite Composite Anodes for Lithium-Ion Batteries [J].
Kasinathan, Raam ;
Marinaro, Mario ;
Axmann, Peter ;
Wohlfahrt-Mehrens, Margret .
ENERGY TECHNOLOGY, 2018, 6 (11) :2256-2263
[9]   Preparation of poly (acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods [J].
Kohestanian, M. ;
Bouhendi, H. ;
Keshavarzi, N. ;
Mahmoudi, M. ;
Pourjavadi, A. ;
Ghiass, M. .
POLYMER BULLETIN, 2022, 79 (09) :7775-7794
[10]   Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries [J].
Komaba, Shinichi ;
Shimomura, Keiji ;
Yabuuchi, Naoaki ;
Ozeki, Tomoaki ;
Yui, Hiroharu ;
Konno, Kohzo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (27) :13487-13495