Boundary value problem for a loaded fractional diffusion equation

被引:5
作者
Pskhu, Arsen, V [1 ]
Ramazanov, Murat I. [2 ]
Kosmakova, Minzilya T. [2 ]
机构
[1] RAS, Kabardino Balkarian Sci Ctr, Inst Appl Math & Automat, Nalchik, Russia
[2] Buketov Karaganda Univ, Karaganda, Kazakhstan
关键词
Fractional diffusion equation; loaded equation; fractional derivative; integral equation; Wright function; HEAT-EQUATION;
D O I
10.55730/1300-0098.3450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a boundary value problem for a loaded fractional diffusion equation. The loaded term has the form of the Riemann-Liouville fractional derivative or integral. The BVP is considered in the open right upper quadrant. The problem is reduced to an integral equation that, in some cases, belongs to the pseudo-Volterra type, and its solvability depends on the order of differentiation in the loaded term and the behavior of the support line of the load in a neighborhood of the origin. All these cases are considered. In particular, we establish sufficient conditions for the unique solvability of the problem. Moreover, we give an example showing that violation of these conditions can lead to nonuniqueness of the solution.
引用
收藏
页码:1585 / +
页数:11
相关论文
共 29 条
[1]   Cauchy problem for fractional diffusion equations [J].
Eidelman, SD ;
Kochubei, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :211-255
[2]   ON THE SOLUTION TO A TWO-DIMENSIONAL HEAT CONDUCTION PROBLEM IN A DEGENERATE DOMAIN [J].
Jenaliyev, M. T. ;
Ramazanov, M., I ;
Kosmakova, M. T. ;
Tuleutaeva, Zh M. .
EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (03) :89-94
[3]   BOUNDARY BEHAVIOR OF THE LAYER POTENTIALS FOR THE TIME FRACTIONAL DIFFUSION EQUATION IN LIPSCHITZ DOMAINS [J].
Kemppainen, Jukka .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2011, 23 (04) :541-563
[4]  
Kilbas A.A., 2006, Theory and Applications of Fractional Differential Equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[5]  
Kilbas A. A., 2010, Analysis, V30, P35, DOI [10.1524/anly.2010.0934, DOI 10.1524/ANLY.2010.0934]
[6]  
Kochubei A., 2019, Handbook of Fractional Calculus with Applications, V2
[7]  
Kochubei A.N., 1990, Differentsial'nye Uravneniya, V26, P660
[8]   To Solving the Heat Equation with Fractional Load [J].
Kosmakova, M. T. ;
Ramazanov, M., I ;
Kasymova, L. Zh .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (12) :2854-2866
[9]   To solving the fractionally loaded heat equation [J].
Kosmakova, M. T. ;
Iskakov, S. A. ;
Kasymova, L. Zh .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 101 (01) :65-77
[10]   On the non-uniqueness of solution to the homogeneous boundary value problem for the heat conduction equation in an angular domain [J].
Kosmakova, M. T. ;
Ramazanov, M. I. ;
Tokesheva, A. S. ;
Khairkulova, A. A. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2016, 84 (04) :80-87