COMPUTING HARMONIC MAPS AND CONFORMAL MAPS ON POINT CLOUDS

被引:0
|
作者
Wu, Tianqi [1 ]
Yau, Shing-Tung [2 ]
机构
[1] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 05期
关键词
harmonic maps; conformal maps; point clouds; DISCRETE UNIFORMIZATION THEOREM; COMBINATORIAL YAMABE FLOW; C-INFINITY-CONVERGENCE; LEVEL-SET METHOD; PARAMETERIZATION; LANDMARK; SURFACES; REGISTRATION; MAPPINGS; ALGORITHMS;
D O I
10.4208/jcm.2206-m2020-0251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a narrow-band approach to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space, using point cloud data only. Given a surface, or a point cloud approximation, we simply use the standard cubic lattice to approximate its epsilon-neighborhood. Then the harmonic map of the surface can be approximated by discrete harmonic maps on lattices. The conformal map, or the surface uniformization, is achieved by minimizing the Dirichlet energy of the harmonic map while deforming the target surface of constant curvature. We propose algorithms and numerical examples for closed surfaces and topological disks. To the best of the authors' knowledge, our approach provides the first meshless method for computing harmonic maps and uniformizations of higher genus surfaces.
引用
收藏
页码:880 / 909
页数:30
相关论文
共 50 条
  • [31] MAPS INTO PROJECTIVE SPACES: LIQUID CRYSTAL AND CONFORMAL ENERGIES
    Mucci, Domenico
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (02): : 597 - 635
  • [32] Feature matching using quasi-conformal maps
    Wang, Chun-xue
    Liu, Li-gang
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (05) : 644 - 657
  • [33] Conformally Symmetric Triangular Lattices and Discrete ν-Conformal Maps
    Buecking, Ulrike
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (24) : 18442 - 18475
  • [34] Building Instance Mapping From ALS Point Clouds Aided by Polygonal Maps
    Xia, Shaobo
    Xu, Sheng
    Wang, Ruisheng
    Li, Jonathan
    Wang, Guanghui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] HARMONIC MAPS ON GENERALIZED WARPED PRODUCT MANIFOLDS
    Boulal, Abdelhamid
    Djaa, N. El Houda
    Djaa, Mustapha
    Ouakkas, Seddik
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (01): : 156 - +
  • [36] HARMONIC MAPS BETWEEN ROTATIONALLY SYMMETRIC MANIFOLDS
    Fotiadis, A.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 : 685 - 695
  • [37] Existence of harmonic maps into CAT(1) spaces
    Breiner, Christine
    Fraser, Ailana
    Huang, Lan-Hsuan
    Mese, Chikako
    Sargent, Pam
    Zhang, Yingying
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2020, 28 (04) : 781 - 835
  • [38] Singular behavior of harmonic maps near corners
    Bezrodnykh, S. I.
    Vlasov, V. I.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (05) : 838 - 851
  • [39] CONFORMAL SLIT MAPS IN APPLIED MATHEMATICS
    Crowdy, Darren
    ANZIAM JOURNAL, 2012, 53 (03) : 171 - 189
  • [40] Explicit constructions of harmonic maps
    Wood, J. C.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 41 - 73