COMPUTING HARMONIC MAPS AND CONFORMAL MAPS ON POINT CLOUDS

被引:0
|
作者
Wu, Tianqi [1 ]
Yau, Shing-Tung [2 ]
机构
[1] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 05期
关键词
harmonic maps; conformal maps; point clouds; DISCRETE UNIFORMIZATION THEOREM; COMBINATORIAL YAMABE FLOW; C-INFINITY-CONVERGENCE; LEVEL-SET METHOD; PARAMETERIZATION; LANDMARK; SURFACES; REGISTRATION; MAPPINGS; ALGORITHMS;
D O I
10.4208/jcm.2206-m2020-0251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a narrow-band approach to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space, using point cloud data only. Given a surface, or a point cloud approximation, we simply use the standard cubic lattice to approximate its epsilon-neighborhood. Then the harmonic map of the surface can be approximated by discrete harmonic maps on lattices. The conformal map, or the surface uniformization, is achieved by minimizing the Dirichlet energy of the harmonic map while deforming the target surface of constant curvature. We propose algorithms and numerical examples for closed surfaces and topological disks. To the best of the authors' knowledge, our approach provides the first meshless method for computing harmonic maps and uniformizations of higher genus surfaces.
引用
收藏
页码:880 / 909
页数:30
相关论文
共 50 条
  • [1] A New Conformal Heat Flow of Harmonic Maps
    Park, Woongbae
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (12)
  • [2] A New Conformal Heat Flow of Harmonic Maps
    Woongbae Park
    The Journal of Geometric Analysis, 2023, 33
  • [3] Computing harmonic maps between Riemannian manifolds
    Gaster, Jonah
    Loustau, Brice
    Monsaingeon, Leonard
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 531 - 580
  • [4] A SADDLE POINT APPROACH TO THE COMPUTATION OF HARMONIC MAPS
    Hu, Qiya
    Tai, Xue-Cheng
    Winther, Ragnar
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1500 - 1523
  • [5] Sobolev spaces of maps and the Dirichlet problem for harmonic maps
    Pigola, Stefano
    Veronelli, Giona
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [6] Variational Quasi-Harmonic Maps for Computing Diffeomorphisms
    Wang, Yu
    Guo, Minghao
    Solomon, Justin
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [7] Harmonic maps between 2-dimensional simplicial complexes: conformal and singular metrics
    Freidin, Brian
    Andreu, Victoria Gras
    GEOMETRIAE DEDICATA, 2024, 218 (01)
  • [8] Harmonic maps
    Grafarend, EW
    JOURNAL OF GEODESY, 2005, 78 (10) : 594 - 615
  • [9] Semantic maps for cross-view relocalization of terrestrial to UAV point clouds
    Ge Xuming
    Fan Yuting
    Zhu Qing
    Wang Bin
    Xu Bo
    Hu Han
    Chen Min
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 114
  • [10] Harmonic maps
    E.W. Grafarend
    Journal of Geodesy, 2005, 78 : 594 - 615