Smartphone-based 3D-printed electrochemiluminescence enzyme biosensor for reagentless glucose quantification in real matrices

被引:25
作者
Calabria, Donato [1 ,2 ]
Lazzarini, Elisa [1 ]
Pace, Andrea [1 ]
Trozzi, Ilaria [1 ]
Zangheri, Martina [1 ,3 ,4 ]
Cinti, Stefano [5 ,6 ]
Difonzo, Marinella [1 ]
Valenti, Giovanni [1 ]
Guardigli, Massimo [1 ,2 ,7 ]
Paolucci, Francesco [1 ]
Mirasoli, Mara [1 ,2 ,7 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Chem Giacomo Ciamician, Via Selmi 2, I-40126 Bologna, Italy
[2] Alma Mater Studiorum Univ Bologna, Interdept Ctr Ind Aerosp Res CIRI AEROSP, Via Baldassarre Canaccini 12, I-47121 Forli, Italy
[3] Alma Mater Studiorum Univ Bologna, Interdept Ctr Ind Agrofood Res CIRI AGRO, Via Quinto Bucci 336, I-47521 Cesena, Italy
[4] Alma Mater Studiorum Univ Bologna, Interdept Ctr Ind Res Adv Mech Engn Applicat & Mat, Viale Risorgimento 2, I-40136 Bologna, Italy
[5] Univ Naples Federico II, Dept Pharm, Via Domen Montesano 49, I-80131 Naples, Italy
[6] Univ Naples Federico II, BAT Ctr, Interuniv Ctr Studies Bioinspired Agroenvironm Tec, I-80055 Naples, Italy
[7] Alma Mater Studiorum Univ Bologna, Interdept Ctr Ind Res Renewable Resources Environm, Via St Alberto 163, I-48123 Ravenna, Italy
关键词
3D printing; Biosensor; Conductive PLA; Electrochemiluminescence; Glucose; Luminol; ELECTROGENERATED CHEMILUMINESCENCE; ELECTRODE; LUMINOL; CHIP; NANOMATERIALS; PROGRESS; OXIDASE; SYSTEM;
D O I
10.1016/j.bios.2023.115146
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Three-dimensional (3D) printed electrochemical devices are increasingly used in point-of-need and point-of-care testing. They show several advantages such as simple fabrication, low cost, fast response, and excellent selectivity and sensitivity in small sample volumes. However, there are only a few examples of analytical devices combining 3D-printed electrodes with electrochemiluminescence (ECL) detection, an electrochemical detection principle widely employed in clinical chemistry analysis. Herein, a portable, 3D-printed miniaturized ECL biosensor for glucose detection has been developed, based on the luminol/H2O2 ECL system and employing a two-electrode configuration with carbon black-doped polylactic acid (PLA) electrodes. The ECL emission is obtained by means of a 1.5V AA alkaline battery and detected using a smartphone camera, thus providing easy portability of the analytical platform. The ECL system was successfully applied for sensing H2O2 and, upon coupling the luminol/H2O2 system with the enzyme glucose oxidase, for glucose detection. The incorporation of luminol and glucose oxidase in an agarose hydrogel matrix allowed to produce ECL devices preloaded with the reagents required for the assay, so that the analysis only required sample addition. The ECL biosensor showed an excellent ability to detect glucose up to 5 mmol L-1, with a limit of detection of 60 mu mol L-1. The biosensor was also used to analyse real samples (i.e., glucose saline solutions and artificial serum samples) with satisfactory results, thus suggesting its suitability for point-of-care analysis. Coupling with other oxidases could further extend the applicability of this analytical platform.
引用
收藏
页数:9
相关论文
共 69 条
[1]   Recent Advances in 3D Printing of Biomedical Sensing Devices [J].
Ali, Md Azahar ;
Hu, Chunshan ;
Yttri, Eric A. ;
Panat, Rahul .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (09)
[2]   3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection [J].
Arshavsky-Graham, Sofia ;
Enders, Anton ;
Ackerman, Shanny ;
Bahnemann, Janina ;
Segal, Ester .
MICROCHIMICA ACTA, 2021, 188 (03)
[3]   High-Throughput Electrochemical Screening Assay for Free and Immobilized Oxidases: Electrochemiluminescence and Intermittent Pulse Amperometry [J].
Aymard, Chloe ;
Bonaventura, Celia ;
Henkens, Robert ;
Mousty, Christine ;
Hecquet, Laurence ;
Charmantray, Franck ;
Blum, Loic J. ;
Doumeche, Bastien .
CHEMELECTROCHEM, 2017, 4 (04) :957-966
[4]  
Basiaga M., 2014, ADV INTELL SYST, V4
[5]   Multiplexed and simultaneous biosensing in a 3D-printed portable six-well smartphone operated electrochemiluminescence standalone point-of-care platform [J].
Bhaiyya, Manish ;
Pattnaik, Prasant Kumar ;
Goel, Sanket .
MICROCHIMICA ACTA, 2022, 189 (02)
[6]   Internet of things-enabled photomultiplier tube- and smartphone-based electrochemiluminescence platform to detect choline and dopamine using 3D-printed closed bipolar electrodes [J].
Bhaiyya, Manish ;
Kulkarni, Madhusudan B. ;
Pattnaik, Prasant Kumar ;
Goel, Sanket .
LUMINESCENCE, 2022, 37 (02) :357-365
[7]   Electrochemiluminescence at Bare and DNA-Coated Graphite Electrodes in 3D-Printed Fluidic Devices [J].
Bishop, Gregory W. ;
Satterwhite-Warden, Jennifer E. ;
Bist, Itti ;
Chen, Eric ;
Rusling, James F. .
ACS SENSORS, 2016, 1 (02) :197-202
[8]   Paper-based smartphone chemosensor for reflectometric on-site total polyphenols quantification in olive oil [J].
Calabria, D. ;
Mirasoli, M. ;
Guardigli, M. ;
Simoni, P. ;
Zangheri, M. ;
Severi, P. ;
Caliceti, C. ;
Roda, A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 305
[9]   Smartphone-Based Chemiluminescent Origami μPAD for the Rapid Assessment of Glucose Blood Levels [J].
Calabria, Donato ;
Zangheri, Martina ;
Trozzi, Ilaria ;
Lazzarini, Elisa ;
Pace, Andrea ;
Mirasoli, Mara ;
Guardigli, Massimo .
BIOSENSORS-BASEL, 2021, 11 (10)
[10]   A Smartphone-Based Chemosensor to Evaluate Antioxidants in Agri-Food Matrices by In Situ AuNP Formation [J].
Calabria, Donato ;
Guardigli, Massimo ;
Severi, Paolo ;
Trozzi, Ilaria ;
Pace, Andrea ;
Cinti, Stefano ;
Zangheri, Martina ;
Mirasoli, Mara .
SENSORS, 2021, 21 (16)