Auto-segmentation of pancreatic tumor in multi-modal image using transferred DSMask R-CNN network

被引:15
作者
Yao, Yao [1 ,3 ]
Chen, Yang [1 ]
Gou, Shuiping [1 ,2 ]
Chen, Shuzhe [1 ]
Zhang, Xiangrong [1 ]
Tong, Nuo [1 ,2 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Shanxi, Peoples R China
[2] Xidian Univ, Acad Adv Interdisciplinary Res, AI Based Big Med Imaging Data Frontier Res Ctr, Xian 710071, Shaanxi, Peoples R China
[3] Hangzhou Vocat & Tech Coll, Sch Informat Engn, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Adaptive radiation therapy; Pancreatic cancer; Tumor segmentation; Mask R-CNN; Transfer learning; CT; ADENOCARCINOMA; RADIOMICS; CANCER;
D O I
10.1016/j.bspc.2023.104583
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pancreatic tumor segmentation is a difficult task due to the high variable shape, small size and hidden position of organs in patients for adaptive radiation therapy plan. To address the problems of limited labeled data, intra-class inconsistency and inter-class indistinction in pancreas tumor segmentation, a transferred DenseSE-Mask R-CNN (TDSMask R-CNN) Network segmentation model using Dense and SE block embedded is proposed in this paper. The multi-scale features strategy is selected to deal with high variability of pancreas and their tumor. The proposed network can learn complementary information from different modes (PET/MR) images respec-tively by the attention mechanism to get pancreatic tumor regions in different domain. As a result, the irrelevant information for segmenting the tumor area can be suppressed and get low false positives. Furthermore, accurate tumor location from PET image is transferred MRI training model for guide Dense-SE network learning to alleviate the small label samples and reduce network overfitting. Experimental results show that the proposed method achieves average Dice Similarity Coefficient (DSC) of 78.33%, sensitivity (SEN) of 78.56%, and speci-ficity (SPE) of 99.72% on the collected PET/MR data set, which is superior to the existing method of some lit-eratures. This algorithm can improve the accuracy of pancreatic tumor segmentation.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[2]   Standards for PET Image Acquisition and Quantitative Data Analysis [J].
Boellaard, Ronald .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 :11S-20S
[3]   MRI evaluation of pancreatic ductal adenocarcinoma: diagnosis, mimics, and staging [J].
Bowman, Andrew W. ;
Bolan, Candice W. .
ABDOMINAL RADIOLOGY, 2019, 44 (03) :936-949
[4]   Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast [J].
Catalano, Onofrio Antonio ;
Daye, Dania ;
Signore, Alberto ;
Iannace, Carlo ;
Vangel, Mark ;
Luongo, Angelo ;
Catalano, Marco ;
Filomena, Mazzeo ;
Mansi, Luigi ;
Soricelli, Andrea ;
Salvatore, Marco ;
Fuin, Niccolo ;
Catana, Ciprian ;
Mahmood, Umar ;
Rosen, Bruce Robert .
INTERNATIONAL JOURNAL OF ONCOLOGY, 2017, 51 (01) :281-288
[5]   Presurgical Evaluation of Pancreatic Cancer: A Comprehensive Imaging Comparison of CT Versus MRI [J].
Chen, Fang-Ming ;
Ni, Jian-Ming ;
Zhang, Zhui-Yang ;
Zhang, Lei ;
Li, Bin ;
Jiang, Chun-Juan .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 206 (03) :526-535
[6]   Ultra-Low-Dose 18F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs [J].
Chen, Kevin T. ;
Gong, Enhao ;
Macruz, Fabiola Bezerra de Carvalho ;
Xu, Junshen ;
Boumis, Athanasia ;
Khalighi, Mehdi ;
Poston, Kathleen L. ;
Sha, Sharon J. ;
Greicius, Michael D. ;
Mormino, Elizabeth ;
Pauly, John M. ;
Srinivas, Shyam ;
Zaharchuk, Greg .
RADIOLOGY, 2019, 290 (03) :649-656
[7]   Model-Driven Deep Learning Method for Pancreatic Cancer Segmentation Based on Spiral-Transformation [J].
Chen, Xiahan ;
Chen, Zihao ;
Li, Jun ;
Zhang, Yu-Dong ;
Lin, Xiaozhu ;
Qian, Xiaohua .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (01) :75-87
[8]   Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue [J].
Chu, Linda C. ;
Park, Seyoun ;
Kawamoto, Satomi ;
Fouladi, Daniel F. ;
Shayesteh, Shahab ;
Zinreich, Eva S. ;
Graves, Jefferson S. ;
Horton, Karen M. ;
Hruban, Ralph H. ;
Yuille, Alan L. ;
Kinzler, Kenneth W. ;
Vogelstein, Bert ;
Fishman, Elliot K. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (02) :349-357
[9]   Pancreas and Cyst Segmentation [J].
Dmitriev, Konstantin ;
Gutenko, Ievgeniia ;
Nadeem, Saad ;
Kaufman, Arie .
MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
[10]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]