Estimating intracluster correlation for ordinal data

被引:0
作者
Langworthy, Benjamin W. [1 ,2 ]
Hou, Zhaoxun [1 ]
Curhan, Gary C. [2 ,3 ,4 ,5 ]
Curhan, Sharon G. [3 ,4 ]
Wang, Molin [1 ,2 ,3 ,4 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
[5] Brigham & Womens Hosp, Renal Div, Boston, MA USA
关键词
Test/retest reliability; reliability and validity; pure-tone audiometry; intracluster correlation; ordinal data; CORRELATION-COEFFICIENT; MODELS;
D O I
10.1080/02664763.2023.2280821
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the estimation of intracluster correlation for ordinal data. We focus on pure-tone audiometry hearing threshold data, where thresholds are measured in 5 decibel increments. We estimate the intracluster correlation for tests from iPhone-based hearing assessment applications as a measure of test/retest reliability. We present a method to estimate the intracluster correlation using mixed effects cumulative logistic and probit models, which assume the outcome data are ordinal. This contrasts with using a mixed effects linear model which assumes that the outcome data are continuous. In simulation studies, we show that using a mixed effects linear model to estimate the intracluster correlation for ordinal data results in a negative finite sample bias, while using mixed effects cumulative logistic or probit models reduces this bias. The estimated intracluster correlation for the iPhone-based hearing assessment application is higher when using the mixed effects cumulative logistic and probit models compared to using a mixed effects linear model. When data are ordinal, using mixed effects cumulative logistic or probit models reduces the bias of intracluster correlation estimates relative to using a mixed effects linear model.
引用
收藏
页码:1609 / 1617
页数:9
相关论文
共 50 条
[41]   OVERVIEW OF MULTINOMIAL MODELS FOR ORDINAL DATA [J].
BARNHART, KX ;
SAMPSON, AR .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (12) :3395-3416
[42]   Learning to classify ordinal data: The data replication method [J].
Cardoso, Jaime S. ;
da Costa, Joaquim F. Pinto .
JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 :1393-1429
[43]   A control chart method for ordinal data [J].
Tucker, GR ;
Woodall, WH ;
Tsui, KL .
AMERICAN JOURNAL OF MATHEMATICAL AND MANAGEMENT SCIENCES, VOL 22, NOS 1&2, 2002, 22 (1-2) :31-48
[44]   A generalized framework for modelling ordinal data [J].
Iannario, Maria ;
Piccolo, Domenico .
STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (02) :163-189
[45]   Differential scorecards for binary and ordinal data [J].
Silva, Pedro F. B. ;
Cardoso, Jaime S. .
INTELLIGENT DATA ANALYSIS, 2015, 19 (06) :1391-1408
[46]   Performance of Estimators for Confirmatory Factor Analysis of Ordinal Variables with Missing Data [J].
Lei, Pui-Wa ;
Shiverdecker, Levi K. .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (04) :584-601
[47]   Aggregation of ordinal data using ordered weighted averaging operator weights [J].
Ahn, B. S. ;
Choi, S. H. .
ANNALS OF OPERATIONS RESEARCH, 2012, 201 (01) :1-16
[48]   Small-variance priors in Bayesian factor analysis with ordinal data [J].
Liang, Xinya ;
Cao, Chunhua .
JOURNAL OF EXPERIMENTAL EDUCATION, 2023, 91 (04) :739-764
[49]   Conditional generalized estimating equations of mean-variance-correlation for clustered data [J].
Luo, Renwen ;
Pan, Jianxin .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 168
[50]   On the estimation of intracluster correlation for time-to-event outcomes in cluster randomized trials [J].
Kalia, Sumeet ;
Klar, Neil ;
Donner, Allan .
STATISTICS IN MEDICINE, 2016, 35 (30) :5551-5560