Estimating intracluster correlation for ordinal data

被引:0
作者
Langworthy, Benjamin W. [1 ,2 ]
Hou, Zhaoxun [1 ]
Curhan, Gary C. [2 ,3 ,4 ,5 ]
Curhan, Sharon G. [3 ,4 ]
Wang, Molin [1 ,2 ,3 ,4 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
[5] Brigham & Womens Hosp, Renal Div, Boston, MA USA
关键词
Test/retest reliability; reliability and validity; pure-tone audiometry; intracluster correlation; ordinal data; CORRELATION-COEFFICIENT; MODELS;
D O I
10.1080/02664763.2023.2280821
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the estimation of intracluster correlation for ordinal data. We focus on pure-tone audiometry hearing threshold data, where thresholds are measured in 5 decibel increments. We estimate the intracluster correlation for tests from iPhone-based hearing assessment applications as a measure of test/retest reliability. We present a method to estimate the intracluster correlation using mixed effects cumulative logistic and probit models, which assume the outcome data are ordinal. This contrasts with using a mixed effects linear model which assumes that the outcome data are continuous. In simulation studies, we show that using a mixed effects linear model to estimate the intracluster correlation for ordinal data results in a negative finite sample bias, while using mixed effects cumulative logistic or probit models reduces this bias. The estimated intracluster correlation for the iPhone-based hearing assessment application is higher when using the mixed effects cumulative logistic and probit models compared to using a mixed effects linear model. When data are ordinal, using mixed effects cumulative logistic or probit models reduces the bias of intracluster correlation estimates relative to using a mixed effects linear model.
引用
收藏
页码:1609 / 1617
页数:9
相关论文
共 50 条
[31]   Ordinalysis: Interpretability of multidimensional ordinal data [J].
Zine-El-Abidine, Mouad ;
Dutagaci, Helin ;
Rousseau, David .
SOFTWAREX, 2023, 22
[32]   Geometric Representations of Dichotomous Ordinal Data [J].
Angelini, Patrizio ;
Bekos, Michael A. ;
Gronemann, Martin ;
Symvonis, Antonios .
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 :205-217
[33]   On the identifiability of a mixture model for ordinal data [J].
Maria Iannario .
METRON, 2010, 68 (1) :87-94
[34]   The unimodal model for the classification of ordinal data [J].
da Costa, Joaquirn F. Pinto ;
Alonso, Hugo ;
Cardoso, Jaime S. .
NEURAL NETWORKS, 2008, 21 (01) :78-91
[35]   Tests of Multivariate Independence for Ordinal Data [J].
Quessy, Jean-Francois .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (19) :3510-3531
[36]   TRANSFORMATION AND CLASSIFICATION OF ORDINAL SURVEY DATA [J].
Sadh, Roopam ;
Kumar, Rajeev .
COMPUTER SCIENCE-AGH, 2023, 24 (02) :211-230
[37]   Concurrent Generation of Ordinal and Normal Data [J].
Demirtas, Hakan ;
Yavuz, Yasemin .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2015, 25 (04) :635-650
[38]   On the complexity of the assignment problem with ordinal data [J].
Oudghiri, Soufiane Drissi ;
Hachimi, Mohamed .
INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (01) :155-181
[39]   Nonparametric Predictive Inference for Ordinal Data [J].
Coolen, F. P. A. ;
Coolen-Schrijner, P. ;
Coolen-Maturi, T. ;
Elkhafifi, F. F. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (19) :3478-3496