Estimating intracluster correlation for ordinal data

被引:0
作者
Langworthy, Benjamin W. [1 ,2 ]
Hou, Zhaoxun [1 ]
Curhan, Gary C. [2 ,3 ,4 ,5 ]
Curhan, Sharon G. [3 ,4 ]
Wang, Molin [1 ,2 ,3 ,4 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
[5] Brigham & Womens Hosp, Renal Div, Boston, MA USA
关键词
Test/retest reliability; reliability and validity; pure-tone audiometry; intracluster correlation; ordinal data; CORRELATION-COEFFICIENT; MODELS;
D O I
10.1080/02664763.2023.2280821
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the estimation of intracluster correlation for ordinal data. We focus on pure-tone audiometry hearing threshold data, where thresholds are measured in 5 decibel increments. We estimate the intracluster correlation for tests from iPhone-based hearing assessment applications as a measure of test/retest reliability. We present a method to estimate the intracluster correlation using mixed effects cumulative logistic and probit models, which assume the outcome data are ordinal. This contrasts with using a mixed effects linear model which assumes that the outcome data are continuous. In simulation studies, we show that using a mixed effects linear model to estimate the intracluster correlation for ordinal data results in a negative finite sample bias, while using mixed effects cumulative logistic or probit models reduces this bias. The estimated intracluster correlation for the iPhone-based hearing assessment application is higher when using the mixed effects cumulative logistic and probit models compared to using a mixed effects linear model. When data are ordinal, using mixed effects cumulative logistic or probit models reduces the bias of intracluster correlation estimates relative to using a mixed effects linear model.
引用
收藏
页码:1609 / 1617
页数:9
相关论文
共 50 条
  • [21] Polarization measurement for ordinal data
    Kobus, Martyna
    JOURNAL OF ECONOMIC INEQUALITY, 2015, 13 (02) : 275 - 297
  • [22] Multidimensional polarization for ordinal data
    Kobus, Martyna
    Kurek, Radoslaw
    JOURNAL OF ECONOMIC INEQUALITY, 2019, 17 (03) : 301 - 317
  • [23] ORDINAL DATA - ALTERNATIVE DISTRIBUTION
    SCHULMAN, RS
    PSYCHOMETRIKA, 1979, 44 (01) : 3 - 20
  • [24] Circumplex Models With Ordinal Data
    Lee, Dayoung
    Zhang, Guangjian
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2022, 29 (06) : 854 - 871
  • [25] Polarization measurement for ordinal data
    Martyna Kobus
    The Journal of Economic Inequality, 2015, 13 : 275 - 297
  • [26] Multidimensional polarization for ordinal data
    Martyna Kobus
    Radosław Kurek
    The Journal of Economic Inequality, 2019, 17 : 301 - 317
  • [27] DATA DIMENSIONALITY REDUCTION METHODS FOR ORDINAL DATA
    Prokop, Martin
    Rezankova, Hana
    INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2011, : 523 - 533
  • [28] Archetypal analysis for ordinal data
    Fernandez, Daniel
    Epifanio, Irene
    McMillan, Louise Fastier
    INFORMATION SCIENCES, 2021, 579 : 281 - 292
  • [29] ON THE USE OF ORDINAL DATA IN DATA ENVELOPMENT ANALYSIS
    COOK, WD
    KRESS, M
    SEIFORD, LM
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1993, 44 (02) : 133 - 140
  • [30] Fuzzy Data Envelopment Analysis with Ordinal and Interval Data
    Izadikhah, Mohammad
    Roostaee, Razieh
    Emrouznejad, Ali
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2021, 29 (03) : 385 - 410