QUANTUM CORRECTIONS TO THE EFFECTIVE POTENTIAL IN NONRENORMALIZABLE THEORIES

被引:1
作者
Kazakov, D. I. [1 ,2 ]
Tolkachev, D. M. [1 ,3 ]
Yahibbaev, R. M. [1 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna, Moscow Region, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Region, Russia
[3] Stepanov Inst Phys, Minsk, BELARUS
基金
俄罗斯科学基金会;
关键词
scalar field theory; effective potential; nonrenormalizable theories; renormalization group;
D O I
10.1134/S0040577923120061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the effective potential in the leading logarithmic approximation, we construct a renormalization group equation that holds for arbitrary scalar field theories, including nonrenormalizable ones, in four dimensions. This equation reduces to the usual renormalization group equation with a one-loop beta-function in the renormalizable case. The solution of this equation sums up the leading logarithmic contributions in the field in all orders of the perturbation theory. This is a nonlinear second-order partial differential equation in general, but it can be reduced to an ordinary one in some cases. In specific examples, we propose a numerical solution of this equation and construct the effective potential in the leading logarithmic approximation. We consider two examples as an illustration: a power-law potential and a cosmological potential of the tan(2) phi type. The obtained equation in physically interesting cases opens up the possibility of studying the properties of the effective potential, the presence of additional minima, spontaneous symmetry breaking, stability of the ground state, etc.
引用
收藏
页码:1870 / 1878
页数:9
相关论文
共 12 条
[1]   Dark energy, α-attractors, and large-scale structure surveys [J].
Akrami, Yashar ;
Kallosh, Renata ;
Linde, Andrei ;
Vardanyan, Valeri .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (06)
[2]  
Bogoliubov N.N., 1980, Introduction to the Theory of Quantized Fields
[3]   UBER DIE MULTIPLIKATION DER KAUSALFUNKTIONEN IN DER QUANTENTHEORIE DER FELDER [J].
BOGOLIUBOW, NN ;
PARASIUK, OS .
ACTA MATHEMATICA, 1957, 97 (3-4) :227-266
[4]   Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions [J].
Bork, L. V. ;
Kazakov, D. I. ;
Kompaniets, M. V. ;
Tolkachev, D. M. ;
Vlasenko, D. E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11) :1-39
[5]   RADIATIVE-CORRECTIONS AS ORIGIN OF SPONTANEOUS SYMMETRY BREAKING [J].
COLEMAN, S ;
WEINBERG, E .
PHYSICAL REVIEW D, 1973, 7 (06) :1888-1910
[6]   INTEGRATION OF STIFF EQUATIONS [J].
CURTISS, CF ;
HIRSCHFELDER, JO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1952, 38 (03) :235-243
[7]  
Hepp K., 1966, COMMUN MATH PHYS, V2, P301, DOI DOI 10.1007/BF01773358
[8]   FUNCTIONAL EVALUATION OF EFFECTIVE POTENTIAL [J].
JACKIW, R .
PHYSICAL REVIEW D, 1974, 9 (06) :1686-1701
[9]   Universality class in conformal inflation [J].
Kallosh, Renata ;
Linde, Andrei .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (07)
[10]   RG equations and high energy behaviour in non-renormalizable theories [J].
Kazakov, D., I .
PHYSICS LETTERS B, 2019, 797