TrackDLO: Tracking Deformable Linear Objects Under Occlusion With Motion Coherence

被引:6
作者
Xiang, Jingyi [1 ]
Dinkel, Holly [2 ,3 ]
Zhao, Harry [4 ]
Gao, Naixiang [1 ]
Coltin, Brian [5 ]
Smith, Trey [5 ]
Bretl, Timothy [2 ,3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[4] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[5] NASA Ames Res Ctr, Intelligent Robot Grp, Moffett Field, CA 94035 USA
关键词
Perception for grasping and manipulation; RGB-D perception; visual tracking;
D O I
10.1109/LRA.2023.3303710
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The TrackDLO algorithm estimates the shape of a Deformable Linear Object (DLO) under occlusion from a sequence of RGB-D images. TrackDLO is vision-only and runs in real-time. It requires no external state information from physics modeling, simulation, visual markers, or contact as input. The algorithm improves on previous approaches by addressing three common scenarios which cause tracking failure: tip occlusion, mid-section occlusion, and self-occlusion. This is achieved through the application of Motion Coherence Theory to impute the spatial velocity of occluded nodes, the use of the topological geodesic distance to track self-occluding DLOs, and the introduction of a non-Gaussian kernel that only penalizes lower-order spatial displacement derivatives to reflect DLO physics. Improved real-time DLO tracking under mid-section occlusion, tip occlusion,and self-occlusion is demonstrated experimentally. The source code and demonstration data are publicly released.
引用
收藏
页码:6179 / 6186
页数:8
相关论文
共 35 条
[1]   Ariadne plus : Deep Learning--Based Augmented Framework for the Instance Segmentation of Wires [J].
Caporali, Alessio ;
Zanella, Riccardo ;
De Greogrio, Daniele ;
Palli, Gianluca .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) :8607-8617
[2]   Combining Vision and Tactile Data for Cable Grasping [J].
Caporali, Alessio ;
Galassi, Kevin ;
Laudante, Gianluca ;
Palli, Gianluca ;
Pirozzi, Salvatore .
2021 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2021, :436-441
[3]   Model-Based Manipulation of Linear Flexible Objects: Task Automation in Simulation and Real World† [J].
Chang, Peng ;
Padir, Taskin .
MACHINES, 2020, 8 (03)
[4]   On different facets of regularization theory [J].
Chen, Z ;
Haykin, S .
NEURAL COMPUTATION, 2002, 14 (12) :2791-2846
[5]  
Chi C, 2019, IEEE INT C INT ROBOT, P6443, DOI [10.1109/IROS40897.2019.8967827, 10.1109/iros40897.2019.8967827]
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]  
Dinkel H., 2022, PROC IEEE INT C ROBO, P1
[8]   Non-rigid Point Set Registration with Global-Local Topology Preservation [J].
Ge, Song ;
Fan, Guoliang ;
Ding, Meng .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, :245-251
[9]   An algorithm based on bidirectional searching and geometric constrained sampling for automatic manipulation planning in aircraft cable assembly [J].
Guo, Jiuming ;
Zhang, Jiwen ;
Wu, Dan ;
Gai, Yuhang ;
Chen, Ken .
JOURNAL OF MANUFACTURING SYSTEMS, 2020, 57 (57) :158-168
[10]   Robotic Cable Routing with Spatial Representation [J].
Jin, Shiyu ;
Lian, Wenzhao ;
Wang, Changhao ;
Tomizuka, Masayoshi ;
Schaal, Stefan .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :5687-5694