Analysis of beef quality according to color changes using computer vision and white-box machine learning techniques

被引:17
|
作者
Sanchez, Claudia N. [1 ]
Orvananos-Guerrero, Maria Teresa [1 ]
Dominguez-Soberanes, Julieta [2 ,4 ]
Alvarez-Cisneros, Yenizey M. [3 ]
机构
[1] Univ Panamericana, Fac Ingn, Aguascalientes 20296, Mexico
[2] Univ Panamericana, Escuela Direccio Negocios Alimentarios, Aguascalientes 20296, Mexico
[3] Univ Autonoma Metropolitana, Dept Biotecnol, Unidad Iztapalapa, Ciudad De Mexico 09310, Mexico
[4] Josemaria Escr Balaguer 101,Villas Bonaterra, Aguascalientes 20296, Aguascalientes, Mexico
关键词
Beef color; Meat quality; Computer vision system; White -box machine learning; MEAT; SYSTEM; CIE;
D O I
10.1016/j.heliyon.2023.e17976
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quality of beef products relies on the presence of a cherry red color, as any deviation toward brownish tones indicates a loss in quality. Existing studies typically analyze individual color channels separately, establishing acceptable ranges. In contrast, our proposed approach involves conducting a multivariate analysis of beef color changes using white-box machine learning techniques. Our proposal encompasses three phases. (1) We employed a Computer Vision System (CVS) to capture the color of beef pieces, implementing a color correction pre-processing step within a specially designed cabin. (2) We examined the differences among three color spaces (RGB, HSV, and CIELab*) (3) We evaluated the performance of three white-box classifiers (decision tree, logistic regression, and multivariate normal distributions) for predicting color in both fresh and non-fresh beef. These models demonstrated high accuracy and enabled a comprehensive understanding of the prediction process. Our results affirm that conducting a multivariate analysis yields superior beef color prediction outcomes compared to the conventional practice of analyzing each channel independently.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Modeling crude oil pyrolysis process using advanced white-box and black-box machine learning techniques
    Fahimeh Hadavimoghaddam
    Alexei Rozhenko
    Mohammad-Reza Mohammadi
    Masoud Mostajeran Gortani
    Peyman Pourafshary
    Abdolhossein Hemmati-Sarapardeh
    Scientific Reports, 13
  • [2] Modeling crude oil pyrolysis process using advanced white-box and black-box machine learning techniques
    Hadavimoghaddam, Fahimeh
    Rozhenko, Alexei
    Mohammadi, Mohammad-Reza
    Mostajeran Gortani, Masoud
    Pourafshary, Peyman
    Hemmati-Sarapardeh, Abdolhossein
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Modeling of methane adsorption capacity in shale gas formations using white-box supervised machine learning techniques
    Amar, Menad Nait
    Larestani, Aydin
    Lv, Qichao
    Zhou, Tongke
    Hemmati-Sarapardeh, Abdolhossein
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [4] Modeling wax disappearance temperature using robust white-box machine learning
    Amar, Menad Nait
    Zeraibi, Noureddine
    Benamara, Chahrazed
    Djema, Hakim
    Saifi, Redha
    Gareche, Mourad
    FUEL, 2024, 376
  • [5] Diabetes prognosis using white-box machine learning framework for interpretability of results
    Khan, Pathan Faisal
    Meehan, Kevin
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1501 - 1506
  • [6] White-Box Analysis over Machine Learning: Modeling Performance of Configurable Systems
    Velez, Miguel
    Jamshidi, Pooyan
    Siegmund, Norbert
    Apel, Sven
    Kastner, Christian
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2021), 2021, : 1072 - 1084
  • [7] Prediction of CO2 diffusivity in brine using white-box machine learning
    Amar, Menad Nait
    Ghahfarokhi, Ashkan Jahanbani
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 190
  • [8] Color grading of beef fat by using computer vision and support vector machine
    Chen, K.
    Sun, X.
    Qin, Ch.
    Tang, X.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2010, 70 (01) : 27 - 32
  • [9] Vision-based texture and color analysis of waterbody images using computer vision and deep learning techniques
    Erfani, Seyed Mohammad Hassan
    Goharian, Erfan
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (03) : 835 - 850
  • [10] Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir
    Zhao, Lidong
    Guo, Yuanling
    Mohammadian, Erfan
    Hadavimoghaddam, Fahimeh
    Jafari, Mehdi
    Kheirollahi, Mahdi
    Rozhenko, Alexei
    Liu, Bo
    ACS OMEGA, 2023, 8 (25): : 22922 - 22933