Link Prediction with Continuous-Time Classical and Quantum Walks

被引:6
作者
Goldsmith, Mark [1 ,2 ]
Saarinen, Harto [1 ,2 ]
Garcia-Perez, Guillermo [1 ,2 ,3 ,4 ]
Malmi, Joonas [1 ,3 ,4 ]
Rossi, Matteo A. C. [1 ,3 ,5 ,6 ]
Maniscalco, Sabrina [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Algorithmiq Ltd, Kanavakatu 3 C, FI-00160 Helsinki, Finland
[2] Univ Turku, Dept Math & Stat, Complex Syst Res Grp, FI-20014 Turku, Finland
[3] Univ Helsinki, Fac Sci, QTF Ctr Excellence, Dept Phys, FI-00014 Helsinki, Finland
[4] Univ Helsinki, InstituteQ Finnish Quantum Inst, FI-00014 Helsinki, Finland
[5] Aalto Univ, QTF Ctr Excellence, Dept Appl Phys, FI-00076 Aalto, Finland
[6] Aalto Univ, InstituteQ Finnish Quantum Inst, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
link prediction; protein-protein interaction networks; random walks; quantum walks; NEIGHBORS; RESTART; NETWORK; MATRIX; MAP;
D O I
10.3390/e25050730
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Protein-protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism, and they form the basis for the field of network medicine. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order to infer missing interactions in these networks, we propose a novel class of link prediction methods based on continuous-time classical and quantum walks. In the case of quantum walks, we examine the usage of both the network adjacency and Laplacian matrices for specifying the walk dynamics. We define a score function based on the corresponding transition probabilities and perform tests on six real-world PPI datasets. Our results show that continuous-time classical random walks and quantum walks using the network adjacency matrix can successfully predict missing protein-protein interactions, with performance rivalling the state-of-the-art.
引用
收藏
页数:15
相关论文
共 62 条
[1]   Friends and neighbors on the Web [J].
Adamic, LA ;
Adar, E .
SOCIAL NETWORKS, 2003, 25 (03) :211-230
[2]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[3]   APID database: redefining protein-protein interaction experimental evidences and binary interactomes [J].
Alonso-Lopez, Diego ;
Campos-Laborie, Francisco J. ;
Gutierrez, Miguel A. ;
Lambourne, Luke ;
Calderwood, Michael A. ;
Vidal, Marc ;
De Las Rivas, Javier .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2019,
[4]   APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks [J].
Alonso-Lopez, Diego ;
Gutierrez, Miguel A. ;
Lopes, Katia P. ;
Prieto, Carlos ;
Santamaria, Rodrigo ;
De Las Rivas, Javier .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W529-W535
[5]  
Armengol E., 2015, ARTIF INTELL, VVolume 277
[6]   Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation [J].
Bader, Philipp ;
Blanes, Sergio ;
Casas, Fernando .
MATHEMATICS, 2019, 7 (12)
[7]   Evolution of the social network of scientific collaborations [J].
Barabási, AL ;
Jeong, H ;
Néda, Z ;
Ravasz, E ;
Schubert, A ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (3-4) :590-614
[8]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[9]   The anatomy of a large-scale hypertextual Web search engine [J].
Brin, S ;
Page, L .
COMPUTER NETWORKS AND ISDN SYSTEMS, 1998, 30 (1-7) :107-117
[10]   RETRACTED: A Random Walk with Restart Model Based on Common Neighbors for Predicting the Clinical Drug Combinations on Coronary Heart Disease (Retracted Article) [J].
Che, Yushi ;
Cheng, Wei ;
Wang, Yiqiao ;
Chen, Dong .
JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021