Attention-guided residual frame learning for video anomaly detection

被引:1
|
作者
Yu, Jun-Hyung [1 ]
Moon, Jeong-Hyeon [2 ]
Sohn, Kyung-Ah [2 ]
机构
[1] LG CNS, Seoul, South Korea
[2] Ajou Univ, Dept Artificial Intelligence, Suwon, South Korea
基金
新加坡国家研究基金会;
关键词
Video anomaly detection; ConvLSTM; Surveillance video; Self-attention; EVENT DETECTION;
D O I
10.1007/s11042-022-13643-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of anomaly detection in video surveillance data has been an active research topic. The main difficulty of video anomaly detection is due to two different definitions of anomalies: semantically abnormal objects and motion caused by unauthorized changes in objects. We propose a new framework for video anomaly detection by designing a convolutional long short-term memory-based model that emphasizes semantic objects using self-attention mechanisms and concatenation operations to further improve performance. Moreover, our proposed method is designed to learn only the residuals of the next frame, which allows the model to better focus on anomalous objects in video frames and also enhances stability of the training process. Our model substantially outperformed previous models on the Chinese University of Hong Kong (CUHK) Avenue and Subway Exit datasets. Our experiments also demonstrated that each module of the residual frame learning and the attention block incorporated into our framework is effective in improving the performance.
引用
收藏
页码:12099 / 12116
页数:18
相关论文
共 50 条
  • [1] Attention-guided residual frame learning for video anomaly detection
    Jun-Hyung Yu
    Jeong-Hyeon Moon
    Kyung-Ah Sohn
    Multimedia Tools and Applications, 2023, 82 : 12099 - 12116
  • [2] Attention-guided generator with dual discriminator GAN for real-time video anomaly detection
    Singh, Rituraj
    Sethi, Anikeit
    Saini, Krishanu
    Saurav, Sumeet
    Tiwari, Aruna
    Singh, Sanjay
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [3] Video anomaly detection guided by clustering learning
    Qiu, Shaoming
    Ye, Jingfeng
    Zhao, Jiancheng
    He, Lei
    Liu, Liangyu
    E, Bicong
    Huang, Xinchen
    PATTERN RECOGNITION, 2024, 153
  • [4] Video anomaly detection method based on future frame prediction and attention mechanism
    Wang, Chenxu
    Yao, Yanxin
    Yao, Han
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 405 - 407
  • [5] Future Frame Prediction Network for Video Anomaly Detection
    Luo, Weixin
    Liu, Wen
    Lian, Dongze
    Gao, Shenghua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 7505 - 7520
  • [6] Attention-guided multi-granularity fusion model for video summarization
    Zhang, Yunzuo
    Liu, Yameng
    Wu, Cunyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [7] Cluster Attention Contrast for Video Anomaly Detection
    Wang, Ziming
    Zou, Yuexian
    Zhang, Zeming
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2463 - 2471
  • [8] Self-supervised memory-guided and attention feature fusion for video anomaly detection
    Jiang, Zitai
    Wang, Chuanxu
    Li, Jiajiong
    Zhao, Min
    Yang, Qingyang
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [9] Future Video Prediction from a Single Frame for Video Anomaly Detection
    Baradaran, Mohammad
    Bergevin, Robert
    ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 472 - 486
  • [10] Memory-guided representation matching for unsupervised video anomaly detection
    Tao, Yiran
    Hu, Yaosi
    Chen, Zhenzhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101