Efficient density estimation in an AR(1) model

被引:0
|
作者
Schick, Anton [1 ]
Wefelmeyer, Wolfgang [2 ]
机构
[1] Binghamton Univ, Dept Math & Stat, Binghamton, NY 13902 USA
[2] Univ Cologne, Abt Math, Weyertal 86-90, D-50931 Cologne, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2023年 / 17卷 / 02期
关键词
Bahadur expansions in L-1; Hadamard differentiability; kernel density estimation; ROOT-N CONSISTENT; NONPARAMETRIC DENSITY; LINEAR-PROCESSES; CONVERGENCE;
D O I
10.1214/23-EJS2166
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies a class of plug-in estimators of the stationary density of an autoregressive model with autoregression parameter 0 < g < 1. These use two types of estimator of the innovation density, a standard kernel estimator and a weighted kernel estimator with weights chosen to mimic the condition that the innovation density has mean zero. Bahadur expansions are obtained for this class of estimators in L-1, the space of integrable functions. These stochastic expansions establish root -n consistency in the L-1-norm. It is shown that the density estimators based on the weighted kernel estimators are asymptotically efficient if an asymptotically efficient estimator of the autoregression parameter is used. Here asymptotic efficiency is understood in the sense of the Hajek-Le Cam convolution theorem.
引用
收藏
页码:2880 / 2911
页数:32
相关论文
共 50 条
  • [1] Chaotic AR(1) model estimation
    Pantaleón, C
    Luengo, D
    Santamaría, I
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3477 - 3480
  • [2] Competitive chaotic AR(1) model estimation
    Luengo, D
    Pantaleon, C
    Santamaria, I
    NEURAL NETWORKS FOR SIGNAL PROCESSING XI, 2001, : 83 - 92
  • [3] L-Estimation for the Parameter of the AR(1) Model
    Han, Sang Moon
    Jung, Byoung Cheol
    KOREAN JOURNAL OF APPLIED STATISTICS, 2005, 18 (01) : 43 - 56
  • [4] A novel geometric AR(1) model and its estimation
    Andrews, Divya Kuttenchalil
    Balakrishna, N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (16) : 2906 - 2935
  • [5] Semiparametric-efficient estimation of AR(1) panel data models
    Park, BU
    Sickles, RC
    Simar, L
    JOURNAL OF ECONOMETRICS, 2003, 117 (02) : 279 - 309
  • [6] Sequential point estimation of parameters in a threshold AR(1) model
    Lee, S
    Sriram, TN
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) : 343 - 355
  • [7] Constrained estimation for the binomial AR(1) model: on Bayesian approach
    Zhang, Rui
    Chen, Jin
    STATISTICS, 2025, 59 (01) : 136 - 151
  • [8] On the estimation ofmissing values in AR(1) model with exponential innovations
    Saadatmand, A.
    Nematollahi, A. R.
    Sadooghi-Alvandi, S. M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (07) : 3393 - 3400
  • [9] Efficient GMM estimation of weak AR processes
    West, KD
    ECONOMICS LETTERS, 2002, 75 (03) : 415 - 418
  • [10] Consistent and efficient density estimation
    Hendriks, H
    Kim, PT
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 1, PROCEEDINGS, 2003, 2667 : 388 - 397