FACE PHOTO-SKETCH SYNTHESIS VIA DOMAIN-INVARIANT FEATURE EMBEDDING

被引:2
作者
Choi, Yeji [1 ,2 ]
Sohn, Kwanghoon [1 ,3 ]
Kim, Ig-Jae [2 ,3 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul, South Korea
[2] Korea Inst Sci & Technol, AI & Robot Inst, Seoul, South Korea
[3] Yonsei Univ, Yonsei KIST Convergence Res Inst, Seoul, South Korea
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
face photo-sketch synthesis; face recognition; domain-invariant feature; identity preservation;
D O I
10.1109/ICIP49359.2023.10222343
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face photo-sketch synthesis involves transforming photos into sketches and vice versa. A well-transformed image should preserve its original identity characteristics and naturalness. However, identity preservation remains a challenge because of the large discrepancy between the photo and sketch domains. To this end, we propose a novel face photo-sketch synthesis framework that uses domain-invariant feature embedding (DIFE). The DIFE framework generates images assuming the domain-invariant feature of an image pair for the same person to be the identity information. A joint feature embedding module considers latent features from two different domains as input and transfers them into the domain-invariant latent space. Subsequently, a semantic-aware decoder completes the desired image guided by multiscale facial parsing masks. Experimental results demonstrate that the DIFE method outperforms state-of-the-art approaches visually and perceptually.
引用
收藏
页码:66 / 70
页数:5
相关论文
共 25 条
[1]   Face photo-sketch synthesis via full-scale identity supervision [J].
Cao, Bing ;
Wang, Nannan ;
Li, Jie ;
Hu, Qinghua ;
Gao, Xinbo .
PATTERN RECOGNITION, 2022, 124
[2]   Progressive Semantic-Aware Style Transformation for Blind Face Restoration [J].
Chen, Chaofeng ;
Li, Xiaoming ;
Yang, Lingbo ;
Lin, Xianhui ;
Zhang, Lei ;
Wong, Kwan-Yee K. .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :11891-11900
[3]   ArcFace: Additive Angular Margin Loss for Deep Face Recognition [J].
Deng, Jiankang ;
Guo, Jia ;
Xue, Niannan ;
Zafeiriou, Stefanos .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4685-4694
[4]   Identity-aware CycleGAN for face photo-sketch synthesis and recognition [J].
Fang, Yuke ;
Deng, Weihong ;
Du, Junping ;
Hu, Jiani .
PATTERN RECOGNITION, 2020, 102
[5]   Image Style Transfer Using Convolutional Neural Networks [J].
Gatys, Leon A. ;
Ecker, Alexander S. ;
Bethge, Matthias .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2414-2423
[6]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[7]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[8]  
Kingma DP, 2014, ADV NEUR IN, V27
[9]   FACE PHOTO SYNTHESIS VIA INTERMEDIATE SEMANTIC ENHANCEMENT GENERATIVE ADVERSARIAL NETWORK [J].
Li, Haoxian ;
Zheng, Jieying ;
Liu, Feng .
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, :96-100
[10]   An Identity-Preserved Model for Face Sketch-Photo Synthesis [J].
Lin, Ye ;
Ling, Shenggui ;
Fu, Keren ;
Cheng, Peng .
IEEE SIGNAL PROCESSING LETTERS, 2020, 27 :1095-1099