Peer-to-Peer Federated Learning based Anomaly Detection for Open Radio Access Networks

被引:12
作者
Attanayaka, Dinaj [1 ]
Porambage, Pawani [1 ,2 ]
Liyanage, Madhusanka [1 ,3 ]
Ylianttila, Mika [1 ]
机构
[1] Univ Oulu, Oulu, Finland
[2] VTT Tech Res Ctr, Oulu, Finland
[3] Univ Coll Dublin, Sch Comp Sci, Dublin, Ireland
来源
ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS | 2023年
基金
爱尔兰科学基金会; 芬兰科学院;
关键词
5G; 6G; Network automation; Security; Privacy; O-RAN; RAN Intelligent controllers; Federated learning;
D O I
10.1109/ICC45041.2023.10278993
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Open radio access network (O-RAN) has been recognized as a revolutionized architecture to support the multi-class wireless services required in fifth-generation (5G) and beyond 5G networks. The openness and the distributed nature of the O-RAN architecture have created new forms of threat surfaces than the conventional RAN architecture and require complex anomaly detection mechanisms. Moreover, with the introduction of RAN intelligent controllers (RICs), it is possible to utilize advanced Artificial Intelligence (AI)/ Machine Learning (ML) algorithms based on closed control loops to detect anomalies in a data-driven manner. In this paper, we particularly investigate the use of Federated Learning (FL) for anomaly detection in the O-RAN architecture, which can further preserve data privacy. We propose a peer-to-peer (P2P) FL-based anomaly detection mechanism for the O-RAN architecture and provide a comprehensive analysis of four variants of P2P FL techniques. Moreover, we simulate the proposed models using the UNSW-NB15 dataset.
引用
收藏
页码:5464 / 5470
页数:7
相关论文
共 21 条
[1]   Deep Learning for B5G Open Radio Access Network: Evolution, Survey, Case Studies, and Challenges [J].
Brik, Bouziane ;
Boutiba, Karim ;
Ksentini, Adlen .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 :228-250
[2]  
De Alwis C., 2022, 6G Frontiers: Towards Future Wireless Systems
[3]  
García-Vázquez A, 2023, INDIAN J DERMATOL VE, V89, P280, DOI [10.25259/IJDVL_1242_20, 10.1109/MCOMSTD.101.2000014]
[4]   Federated Learning based Anomaly Detection as an Enabler for Securing Network and Service Management Automation in Beyond 5G Networks [J].
Jayasinghe, Suwani ;
Siriwardhana, Yushan ;
Porambage, Pawani ;
Liyanage, Madhusanka ;
Ylianttila, Mika .
2022 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT (EUCNC/6G SUMMIT), 2022, :345-350
[5]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[6]  
Liu Y., 2020, BioMed Research International, V2020, P1, DOI DOI 10.1109/ISI49825.2020.9280540
[7]  
Liu Y, 2020, CHINA COMMUN, V17, P105, DOI 10.23919/JCC.2020.09.009
[8]  
Liyanage M., 2022, ARXIV221201510
[9]  
López-Alt A, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P1219
[10]   Artificial Intelligence in Open-Radio Access Network [J].
Masur, Paul H. ;
Reed, Jeffrey H. ;
Tripathi, Nishith K. .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2022, 37 (09) :6-15