共 50 条
The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net
被引:1
|作者:
Li, Ya-Hui
[1
,2
]
Lin, Shao-Chieh
[2
,3
]
Chung, Hsiao-Wen
[1
,4
]
Chang, Chia-Ching
[2
,5
]
Peng, Hsu-Hsia
[6
]
Huang, Teng-Yi
[7
]
Shen, Wu-Chung
[8
,9
]
Tsai, Chon-Haw
[10
]
Lo, Yu-Chien
[9
]
Lee, Tung-Yang
[11
,12
]
Juan, Cheng-Hsuan
[11
,12
]
Juan, Cheng-En
[12
]
Chang, Hing-Chiu
[14
,15
]
Liu, Yi-Jui
[13
]
Juan, Chun-Jung
[2
,6
,8
,9
,16
,17
]
机构:
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
[2] China Med Univ, Hsinchu Hosp, Dept Med Imaging, 199,Sec 1,Xinglong Rd, Zhubei 302, Hsinchu, Taiwan
[3] Feng Chia Univ, Ph D Program Elect & Commun Engn, Taichung, Taiwan
[4] Natl Taiwan Univ, Dept Elect Engn, Taipei, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Dept Management Sci, Hsinchu, Taiwan
[6] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[8] China Med Univ, Sch Med, Coll Med, Dept Radiol, Taichung, Taiwan
[9] Med Univ Hosp, Dept Med Imaging, Taichung, Taiwan
[10] China Med Univ Hosp, Dept Neurol, Taichung, Taiwan
[11] Cheng Ching Hosp, Taichung, Taiwan
[12] Feng Chia Univ, Masters Program Biomed Informat & Biomed Engn, Taichung, Taiwan
[13] Feng Chia Univ, Dept Automat Control Engn, 100 Wenhwa Rd, Taichung 40724, Taiwan
[14] Chinese Univ Hong Kong, Dept Biomed Engn, Shatin, ERB1112,11-F,William MW Mong Engn Bldg, Hong Kong, Peoples R China
[15] Chinese Univ Hong Kong, Multiscale Med Robot Ctr, Shatin, Hong Kong, Peoples R China
[16] Natl Def Med Ctr, Dept Biomed Engn, Taipei, Taiwan
[17] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词:
Ischemic Stroke;
Diffusion Magnetic Resonance Imaging;
Retrospective Study;
Deep Learning;
Neural Networks;
Computer;
DIFFUSION;
DEEP;
DIAGNOSIS;
ARTIFACTS;
IMAGES;
VOLUME;
D O I:
10.1007/s00330-023-09622-z
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
BackgroundTo evaluate the effect of the weighting of input imaging combo and ADC threshold on the performance of the U-Net and to find an optimized input imaging combo and ADC threshold in segmenting acute ischemic stroke (AIS) lesion.MethodsThis study retrospectively enrolled a total of 212 patients having AIS. Four combos, including ADC-ADC-ADC (AAA), DWI-ADC-ADC (DAA), DWI-DWI-ADC (DDA), and DWI-DWI-DWI (DDD), were used as input images, respectively. Three ADC thresholds including 0.6, 0.8 and 1.8 x 10(-3) mm(2)/s were applied. Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of U-Nets. Nonparametric Kruskal-Wallis test with Tukey-Kramer post-hoc tests were used for comparison. A p < .05 was considered statistically significant.ResultsThe DSC significantly varied among different combos of images and different ADC thresholds. Hybrid U-Nets outperformed uniform U-Nets at ADC thresholds of 0.6 x 10(-3) mm(2)/s and 0.8 x 10(-3) mm(2)/s (p < .001). The U-Net with imaging combo of DDD had segmentation performance similar to hybrid U-Nets at an ADC threshold of 1.8 x 10(-3) mm(2)/s (p = .062 to 1). The U-Net using the imaging combo of DAA at the ADC threshold of 0.6 x 10(-3) mm(2)/s achieved the highest DSC in the segmentation of AIS lesion.ConclusionsThe segmentation performance of U-Net for AIS varies among the input imaging combos and ADC thresholds. The U-Net is optimized by choosing the imaging combo of DAA at an ADC threshold of 0.6 x 10(-3) mm(2)/s in segmentating AIS lesion with highest DSC.
引用
收藏
页码:6157 / 6167
页数:11
相关论文