The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net

被引:1
|
作者
Li, Ya-Hui [1 ,2 ]
Lin, Shao-Chieh [2 ,3 ]
Chung, Hsiao-Wen [1 ,4 ]
Chang, Chia-Ching [2 ,5 ]
Peng, Hsu-Hsia [6 ]
Huang, Teng-Yi [7 ]
Shen, Wu-Chung [8 ,9 ]
Tsai, Chon-Haw [10 ]
Lo, Yu-Chien [9 ]
Lee, Tung-Yang [11 ,12 ]
Juan, Cheng-Hsuan [11 ,12 ]
Juan, Cheng-En [12 ]
Chang, Hing-Chiu [14 ,15 ]
Liu, Yi-Jui [13 ]
Juan, Chun-Jung [2 ,6 ,8 ,9 ,16 ,17 ]
机构
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
[2] China Med Univ, Hsinchu Hosp, Dept Med Imaging, 199,Sec 1,Xinglong Rd, Zhubei 302, Hsinchu, Taiwan
[3] Feng Chia Univ, Ph D Program Elect & Commun Engn, Taichung, Taiwan
[4] Natl Taiwan Univ, Dept Elect Engn, Taipei, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Dept Management Sci, Hsinchu, Taiwan
[6] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[8] China Med Univ, Sch Med, Coll Med, Dept Radiol, Taichung, Taiwan
[9] Med Univ Hosp, Dept Med Imaging, Taichung, Taiwan
[10] China Med Univ Hosp, Dept Neurol, Taichung, Taiwan
[11] Cheng Ching Hosp, Taichung, Taiwan
[12] Feng Chia Univ, Masters Program Biomed Informat & Biomed Engn, Taichung, Taiwan
[13] Feng Chia Univ, Dept Automat Control Engn, 100 Wenhwa Rd, Taichung 40724, Taiwan
[14] Chinese Univ Hong Kong, Dept Biomed Engn, Shatin, ERB1112,11-F,William MW Mong Engn Bldg, Hong Kong, Peoples R China
[15] Chinese Univ Hong Kong, Multiscale Med Robot Ctr, Shatin, Hong Kong, Peoples R China
[16] Natl Def Med Ctr, Dept Biomed Engn, Taipei, Taiwan
[17] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Ischemic Stroke; Diffusion Magnetic Resonance Imaging; Retrospective Study; Deep Learning; Neural Networks; Computer; DIFFUSION; DEEP; DIAGNOSIS; ARTIFACTS; IMAGES; VOLUME;
D O I
10.1007/s00330-023-09622-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundTo evaluate the effect of the weighting of input imaging combo and ADC threshold on the performance of the U-Net and to find an optimized input imaging combo and ADC threshold in segmenting acute ischemic stroke (AIS) lesion.MethodsThis study retrospectively enrolled a total of 212 patients having AIS. Four combos, including ADC-ADC-ADC (AAA), DWI-ADC-ADC (DAA), DWI-DWI-ADC (DDA), and DWI-DWI-DWI (DDD), were used as input images, respectively. Three ADC thresholds including 0.6, 0.8 and 1.8 x 10(-3) mm(2)/s were applied. Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of U-Nets. Nonparametric Kruskal-Wallis test with Tukey-Kramer post-hoc tests were used for comparison. A p < .05 was considered statistically significant.ResultsThe DSC significantly varied among different combos of images and different ADC thresholds. Hybrid U-Nets outperformed uniform U-Nets at ADC thresholds of 0.6 x 10(-3) mm(2)/s and 0.8 x 10(-3) mm(2)/s (p < .001). The U-Net with imaging combo of DDD had segmentation performance similar to hybrid U-Nets at an ADC threshold of 1.8 x 10(-3) mm(2)/s (p = .062 to 1). The U-Net using the imaging combo of DAA at the ADC threshold of 0.6 x 10(-3) mm(2)/s achieved the highest DSC in the segmentation of AIS lesion.ConclusionsThe segmentation performance of U-Net for AIS varies among the input imaging combos and ADC thresholds. The U-Net is optimized by choosing the imaging combo of DAA at an ADC threshold of 0.6 x 10(-3) mm(2)/s in segmentating AIS lesion with highest DSC.
引用
收藏
页码:6157 / 6167
页数:11
相关论文
共 50 条
  • [41] Acute ischemic stroke lesion segmentation in non-contrast CT images using 3D convolutional neural networks
    Dobshik, A. V.
    Verbitskiy, S. K.
    Pestunov, I. A.
    Sherman, K. M.
    Sinyavskiy, Yu. N.
    Tulupov, A. A.
    Berikov, V. B.
    COMPUTER OPTICS, 2023, 47 (05) : 770 - 777
  • [42] Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning
    Byra, Michal
    Wu, Mei
    Zhang, Xiaodong
    Jang, Hyungseok
    Ma, Ya-Jun
    Chang, Eric Y.
    Shah, Sameer
    Du, Jiang
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (03) : 1109 - 1122
  • [43] White Matter, Gray Matter and Cerebrospinal Fluid Segmentation from Brain Magnetic Resonance Imaging Using Adaptive U-Net and Local Convolutional Neural Network
    Pham The Bao
    Tran Anh Tuan
    Anh Tuan, Tran
    Le Nhi Lam Thuy
    Kim, Jin Young
    Tavares, Joao Manuel R. S.
    COMPUTER JOURNAL, 2021,
  • [44] Urinary Stones Segmentation in Abdominal X-Ray Images Using Cascaded U-Net Pipeline With Stone-Embedding Augmentation and Lesion-Size Reweighting Approach
    Preedanan, Wongsakorn
    Suzuki, Kenji
    Kondo, Toshiaki
    Kobayashi, Masaki
    Tanaka, Hajime
    Ishioka, Junichiro
    Matsuoka, Yoh
    Fujii, Yasuhisa
    Kumazawa, Itsuo
    IEEE ACCESS, 2023, 11 : 25702 - 25712
  • [45] White Matter, Gray Matter and Cerebrospinal Fluid Segmentation from Brain Magnetic Resonance Imaging Using Adaptive U-Net and Local Convolutional Neural Network
    Pham The Bao
    Tran Anh Tuan
    Le Nhi Lam Thuy
    Kim, Jin Young
    Tavares, Joao Manuel R. S.
    COMPUTER JOURNAL, 2022, 65 (12) : 3081 - 3090
  • [46] Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net)
    Zabihollahy, Fatemeh
    Rajchl, Martin
    White, James A.
    Ukwatta, Eranga
    MEDICAL PHYSICS, 2020, 47 (04) : 1645 - 1655
  • [47] A Two-Phase Approach using Mask R-CNN and 3D U-Net for High-Accuracy Automatic Segmentation of Pancreas in CT Imaging
    Dogan, Ramazan Ozgur
    Dogan, Hulya
    Bayrak, Coskun
    Kayikcioglu, Temel
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 207
  • [48] Predicting treatment-specific lesion outcomes in acute ischemic stroke from 4D CT perfusion imaging using spatio-temporal convolutional neural networks
    Amador, Kimberly
    Wilms, Matthias
    Winder, Anthony
    Fiehler, Jens
    Forkert, Nils D.
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [49] Hypoperfusion Lesion And Target Mismatch Prediction In Acute Ischemic Stroke From Baseline Mr Diffusion Imaging Using A 3d Convolutional Neural Network
    Yu, Yannan
    Gong, Enhao
    Ouyang, Jiahong
    Christensen, Soren
    Scalzo, Fabien
    Liebeskind, David S.
    Lansberg, Maarten G.
    Albers, Greg
    Zaharchuk, Greg
    STROKE, 2022, 53
  • [50] Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network
    Arai, Hideo
    Kawakubo, Masateru
    Sanui, Kenichi
    Iwamoto, Ryoji
    Nishimura, Hiroshi
    Kadokami, Toshiaki
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (03)