The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net

被引:1
|
作者
Li, Ya-Hui [1 ,2 ]
Lin, Shao-Chieh [2 ,3 ]
Chung, Hsiao-Wen [1 ,4 ]
Chang, Chia-Ching [2 ,5 ]
Peng, Hsu-Hsia [6 ]
Huang, Teng-Yi [7 ]
Shen, Wu-Chung [8 ,9 ]
Tsai, Chon-Haw [10 ]
Lo, Yu-Chien [9 ]
Lee, Tung-Yang [11 ,12 ]
Juan, Cheng-Hsuan [11 ,12 ]
Juan, Cheng-En [12 ]
Chang, Hing-Chiu [14 ,15 ]
Liu, Yi-Jui [13 ]
Juan, Chun-Jung [2 ,6 ,8 ,9 ,16 ,17 ]
机构
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
[2] China Med Univ, Hsinchu Hosp, Dept Med Imaging, 199,Sec 1,Xinglong Rd, Zhubei 302, Hsinchu, Taiwan
[3] Feng Chia Univ, Ph D Program Elect & Commun Engn, Taichung, Taiwan
[4] Natl Taiwan Univ, Dept Elect Engn, Taipei, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Dept Management Sci, Hsinchu, Taiwan
[6] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[8] China Med Univ, Sch Med, Coll Med, Dept Radiol, Taichung, Taiwan
[9] Med Univ Hosp, Dept Med Imaging, Taichung, Taiwan
[10] China Med Univ Hosp, Dept Neurol, Taichung, Taiwan
[11] Cheng Ching Hosp, Taichung, Taiwan
[12] Feng Chia Univ, Masters Program Biomed Informat & Biomed Engn, Taichung, Taiwan
[13] Feng Chia Univ, Dept Automat Control Engn, 100 Wenhwa Rd, Taichung 40724, Taiwan
[14] Chinese Univ Hong Kong, Dept Biomed Engn, Shatin, ERB1112,11-F,William MW Mong Engn Bldg, Hong Kong, Peoples R China
[15] Chinese Univ Hong Kong, Multiscale Med Robot Ctr, Shatin, Hong Kong, Peoples R China
[16] Natl Def Med Ctr, Dept Biomed Engn, Taipei, Taiwan
[17] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Ischemic Stroke; Diffusion Magnetic Resonance Imaging; Retrospective Study; Deep Learning; Neural Networks; Computer; DIFFUSION; DEEP; DIAGNOSIS; ARTIFACTS; IMAGES; VOLUME;
D O I
10.1007/s00330-023-09622-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundTo evaluate the effect of the weighting of input imaging combo and ADC threshold on the performance of the U-Net and to find an optimized input imaging combo and ADC threshold in segmenting acute ischemic stroke (AIS) lesion.MethodsThis study retrospectively enrolled a total of 212 patients having AIS. Four combos, including ADC-ADC-ADC (AAA), DWI-ADC-ADC (DAA), DWI-DWI-ADC (DDA), and DWI-DWI-DWI (DDD), were used as input images, respectively. Three ADC thresholds including 0.6, 0.8 and 1.8 x 10(-3) mm(2)/s were applied. Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of U-Nets. Nonparametric Kruskal-Wallis test with Tukey-Kramer post-hoc tests were used for comparison. A p < .05 was considered statistically significant.ResultsThe DSC significantly varied among different combos of images and different ADC thresholds. Hybrid U-Nets outperformed uniform U-Nets at ADC thresholds of 0.6 x 10(-3) mm(2)/s and 0.8 x 10(-3) mm(2)/s (p < .001). The U-Net with imaging combo of DDD had segmentation performance similar to hybrid U-Nets at an ADC threshold of 1.8 x 10(-3) mm(2)/s (p = .062 to 1). The U-Net using the imaging combo of DAA at the ADC threshold of 0.6 x 10(-3) mm(2)/s achieved the highest DSC in the segmentation of AIS lesion.ConclusionsThe segmentation performance of U-Net for AIS varies among the input imaging combos and ADC thresholds. The U-Net is optimized by choosing the imaging combo of DAA at an ADC threshold of 0.6 x 10(-3) mm(2)/s in segmentating AIS lesion with highest DSC.
引用
收藏
页码:6157 / 6167
页数:11
相关论文
共 50 条
  • [31] Smart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)
    Sohail, Nosheen
    Anwar, Syed M.
    Majeed, Farhat
    Sanin, Cesar
    Szczerbicki, Edward
    CYBERNETICS AND SYSTEMS, 2021, 52 (05) : 445 - 460
  • [32] Intelligent skin lesion segmentation using deformable attention Transformer U-Net with bidirectional attention mechanism in skin cancer images
    Cai, Lili
    Hou, Keke
    Zhou, Su
    SKIN RESEARCH AND TECHNOLOGY, 2024, 30 (08)
  • [33] Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data
    Wu, Ona
    Winzeck, Stefan
    Giese, Anne-Katrin
    Hancock, Brandon L.
    Etherton, Mark R.
    Bouts, Mark J. R. J.
    Donahue, Kathleen
    Schirmer, Markus D.
    Irie, Robert E.
    Mocking, Steven J. T.
    McIntosh, Elissa C.
    Bezerra, Raquel
    Kamnitsas, Konstantinos
    Frid, Petrea
    Wasselius, Johan
    Cole, John W.
    Xu, Huichun
    Holmegaard, Lukas
    Jimenez-Conde, Jordi
    Lemmens, Robin
    Lorentzen, Eric
    McArdle, Patrick F.
    Meschia, James F.
    Roquer, Jaume
    Rundek, Tatjana
    Sacco, Ralph L.
    Schmidt, Reinhold
    Sharma, Pankaj
    Slowik, Agnieszka
    Stanne, Tara M.
    Thijs, Vincent
    Vagal, Achala
    Woo, Daniel
    Bevan, Stephen
    Kittner, Steven J.
    Mitchell, Braxton D.
    Rosand, Jonathan
    Worrall, Bradford B.
    Jern, Christina
    Lindgren, Arne G.
    Maguire, Jane
    Rost, Natalia S.
    STROKE, 2019, 50 (07) : 1734 - 1741
  • [34] Semantic Segmentation of Self-Supervised Dataset and Medical Images Using Combination of U-Net and Neural Ordinary Differential Equations
    Ahamed, Md Atik
    Hossain, Md Ali
    Al Mamun, Md
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 238 - 241
  • [35] Precise segmentation of non-enhanced computed tomography in patients with ischemic stroke based on multi-scale U-Net deep network model
    Li, Shaoquan
    Zheng, Jianye
    Li, Dongjiao
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208
  • [36] Automatic segmentation of sub-acute ischemic stroke lesion by using DTCWT and DBN with parameter fine tuning
    Melingi, Sunil Babu
    Vijayalakshmi, V.
    EVOLUTIONARY INTELLIGENCE, 2019, 12 (03) : 479 - 490
  • [37] Toward more accurate diagnosis of multiple sclerosis: Automated lesion segmentation in brain magnetic resonance image using modified U-Net model
    Amaludin, Bakhtiar
    Kadry, Seifedine
    Ting, Fung Fung
    Taniar, David
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [38] Fully Automated Segmentation of Human Eyeball Using Three-Dimensional U-Net in T2 Magnetic Resonance Imaging
    Yang, Jin-Ju
    Kim, Kyeong Ho
    Hong, Jinwoo
    Yeon, Yeji
    Lee, Ji Young
    Lee, Won June
    Kim, Yu Jeong
    Lee, Jong -Min
    Lim, Han Woong
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (11):
  • [39] Automatic detection and segmentation of lesions in 18F-FDG PET/CT imaging of patients with Hodgkin lymphoma using 3D dense U-Net
    Izadi, Mohammad Amin
    Alemohammad, Nafiseh
    Geramifar, Parham
    Salimi, Ali
    Paymani, Zeinab
    Eisazadeh, Roya
    Samimi, Rezvan
    Nikkholgh, Babak
    Sabouri, Zaynab
    NUCLEAR MEDICINE COMMUNICATIONS, 2024, 45 (11) : 963 - 973
  • [40] A Hybrid Approach for Sub-acute Ischemic Stroke Lesion Segmentation Using Random Decision Forest and Gravitational Search Algorithm
    Melingi, Sunil Babu
    Vijayalakshmi, V.
    CURRENT MEDICAL IMAGING REVIEWS, 2019, 15 (02) : 170 - 183