The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net

被引:1
|
作者
Li, Ya-Hui [1 ,2 ]
Lin, Shao-Chieh [2 ,3 ]
Chung, Hsiao-Wen [1 ,4 ]
Chang, Chia-Ching [2 ,5 ]
Peng, Hsu-Hsia [6 ]
Huang, Teng-Yi [7 ]
Shen, Wu-Chung [8 ,9 ]
Tsai, Chon-Haw [10 ]
Lo, Yu-Chien [9 ]
Lee, Tung-Yang [11 ,12 ]
Juan, Cheng-Hsuan [11 ,12 ]
Juan, Cheng-En [12 ]
Chang, Hing-Chiu [14 ,15 ]
Liu, Yi-Jui [13 ]
Juan, Chun-Jung [2 ,6 ,8 ,9 ,16 ,17 ]
机构
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
[2] China Med Univ, Hsinchu Hosp, Dept Med Imaging, 199,Sec 1,Xinglong Rd, Zhubei 302, Hsinchu, Taiwan
[3] Feng Chia Univ, Ph D Program Elect & Commun Engn, Taichung, Taiwan
[4] Natl Taiwan Univ, Dept Elect Engn, Taipei, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Dept Management Sci, Hsinchu, Taiwan
[6] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[8] China Med Univ, Sch Med, Coll Med, Dept Radiol, Taichung, Taiwan
[9] Med Univ Hosp, Dept Med Imaging, Taichung, Taiwan
[10] China Med Univ Hosp, Dept Neurol, Taichung, Taiwan
[11] Cheng Ching Hosp, Taichung, Taiwan
[12] Feng Chia Univ, Masters Program Biomed Informat & Biomed Engn, Taichung, Taiwan
[13] Feng Chia Univ, Dept Automat Control Engn, 100 Wenhwa Rd, Taichung 40724, Taiwan
[14] Chinese Univ Hong Kong, Dept Biomed Engn, Shatin, ERB1112,11-F,William MW Mong Engn Bldg, Hong Kong, Peoples R China
[15] Chinese Univ Hong Kong, Multiscale Med Robot Ctr, Shatin, Hong Kong, Peoples R China
[16] Natl Def Med Ctr, Dept Biomed Engn, Taipei, Taiwan
[17] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Ischemic Stroke; Diffusion Magnetic Resonance Imaging; Retrospective Study; Deep Learning; Neural Networks; Computer; DIFFUSION; DEEP; DIAGNOSIS; ARTIFACTS; IMAGES; VOLUME;
D O I
10.1007/s00330-023-09622-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundTo evaluate the effect of the weighting of input imaging combo and ADC threshold on the performance of the U-Net and to find an optimized input imaging combo and ADC threshold in segmenting acute ischemic stroke (AIS) lesion.MethodsThis study retrospectively enrolled a total of 212 patients having AIS. Four combos, including ADC-ADC-ADC (AAA), DWI-ADC-ADC (DAA), DWI-DWI-ADC (DDA), and DWI-DWI-DWI (DDD), were used as input images, respectively. Three ADC thresholds including 0.6, 0.8 and 1.8 x 10(-3) mm(2)/s were applied. Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of U-Nets. Nonparametric Kruskal-Wallis test with Tukey-Kramer post-hoc tests were used for comparison. A p < .05 was considered statistically significant.ResultsThe DSC significantly varied among different combos of images and different ADC thresholds. Hybrid U-Nets outperformed uniform U-Nets at ADC thresholds of 0.6 x 10(-3) mm(2)/s and 0.8 x 10(-3) mm(2)/s (p < .001). The U-Net with imaging combo of DDD had segmentation performance similar to hybrid U-Nets at an ADC threshold of 1.8 x 10(-3) mm(2)/s (p = .062 to 1). The U-Net using the imaging combo of DAA at the ADC threshold of 0.6 x 10(-3) mm(2)/s achieved the highest DSC in the segmentation of AIS lesion.ConclusionsThe segmentation performance of U-Net for AIS varies among the input imaging combos and ADC thresholds. The U-Net is optimized by choosing the imaging combo of DAA at an ADC threshold of 0.6 x 10(-3) mm(2)/s in segmentating AIS lesion with highest DSC.
引用
收藏
页码:6157 / 6167
页数:11
相关论文
共 50 条
  • [21] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Ali Alijamaat
    Alireza NikravanShalmani
    Peyman Bayat
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 1459 - 1467
  • [22] 3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network
    Gonzalez, S. Rosas
    Sekou, T. Birgui
    Hidane, M.
    Tauber, C.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 113 - 123
  • [23] Skin lesion segmentation with a multiscale input fusion U-Net incorporating Res2-SE and pyramid dilated convolution
    Liu, Zhihui
    Hu, Jie
    Gong, Xulu
    Li, Fuzhong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [24] Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network
    de Moor, Timothy
    Rodriguez-Ruiz, Alejandro
    Merida, Albert Gubern
    Mann, Ritse
    Teuwen, Jonas
    14TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI 2018), 2018, 10718
  • [25] Automatic Epicardial Fat Segmentation in Cardiac CT Imaging Using 3D Deep Attention U-Net
    He, Xiuxiu
    Guo, Bangjun
    Lei, Yang
    Wang, Tonghe
    Liu, Tian
    Curran, Walter J.
    Zhang, Long Jiang
    Yang, Xiaofeng
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [26] Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI)
    Hazarika, Ruhul Amin
    Maji, Arnab Kumar
    Syiem, Raplang
    Sur, Samarendra Nath
    Kandar, Debdatta
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (04) : 893 - 909
  • [27] ASPECTS-based net water uptake as an imaging biomarker for lesion age in acute ischemic stroke
    XiaoQing Cheng
    Hang Wu
    JiaQian Shi
    Zheng Dong
    Jia Liu
    ChangSheng Zhou
    QuanHui Liu
    XiaoQin Su
    Zhao Shi
    YingLe Li
    LuLu Xiao
    WuSheng Zhu
    GuangMing Lu
    Journal of Neurology, 2021, 268 : 4744 - 4751
  • [28] ASPECTS-based net water uptake as an imaging biomarker for lesion age in acute ischemic stroke
    Cheng, XiaoQing
    Wu, Hang
    Shi, JiaQian
    Dong, Zheng
    Liu, Jia
    Zhou, ChangSheng
    Liu, QuanHui
    Su, XiaoQin
    Shi, Zhao
    Li, YingLe
    Xiao, LuLu
    Zhu, WuSheng
    Lu, GuangMing
    JOURNAL OF NEUROLOGY, 2021, 268 (12) : 4744 - 4751
  • [29] Automatic segmentation of the brain stroke lesions from MR flair scans using improved U-net framework
    Khezrpour, Samrand
    Seyedarabi, Hadi
    Razavi, Seyed Naser
    Farhoudi, Mehdi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [30] Automated Final Lesion Segmentation in Posterior Circulation Acute Ischemic Stroke Using Deep Learning
    Zoetmulder, Riaan
    Konduri, Praneeta R.
    Obdeijn, Iris, V
    Gavves, Efstratios
    Isgum, Ivana
    Majoie, Charles B. L. M.
    Dippel, Diederik W. J.
    Roos, Yvo B. W. E. M.
    Goyal, Mayank
    Mitchell, Peter J.
    Campbell, Bruce C., V
    Lopes, Demetrius K.
    Reimann, Gernot
    Jovin, Tudor G.
    Saver, Jeffrey L.
    Muir, Keith W.
    White, Phil
    Bracard, Serge
    Chen, Bailiang
    Brown, Scott
    Schonewille, Wouter J.
    van der Hoeven, Erik
    Puetz, Volker
    Marquering, Henk A.
    DIAGNOSTICS, 2021, 11 (09)