GENERALIZED ABSOLUTE CONVERGENCE OF SINGLE AND DOUBLE VILENKIN-FOURIER SERIES AND RELATED RESULTS
被引:0
作者:
Kalsariya, Nayna Govindbhai
论文数: 0引用数: 0
h-index: 0
机构:
M S Univ Baroda, Fac Sci, Dept Math, Vadodara 390002, IndiaM S Univ Baroda, Fac Sci, Dept Math, Vadodara 390002, India
Kalsariya, Nayna Govindbhai
[1
]
Ghodadra, Bhikha Lila
论文数: 0引用数: 0
h-index: 0
机构:
M S Univ Baroda, Fac Sci, Dept Math, Vadodara 390002, IndiaM S Univ Baroda, Fac Sci, Dept Math, Vadodara 390002, India
Ghodadra, Bhikha Lila
[1
]
机构:
[1] M S Univ Baroda, Fac Sci, Dept Math, Vadodara 390002, India
来源:
MATHEMATICA BOHEMICA
|
2024年
/
149卷
/
02期
关键词:
generalized absolute convergence;
Vilenkin-Fourier series;
modulus of conti-nuity;
multiplicative system;
D O I:
10.21136/MB.2023.0023-22
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients (f) over cap (n), n is an element of N, of functions f is an element of L-p(G) for some 1 < p <= 2. We obtain certain sufficient conditions for the finiteness of the series Sigma(infinity)(n=1) an| (f) over cap (n)|(r), where {a(n)} is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2. We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative analogue of some results due to Moricz (2010), Moricz and Veres (2011), Golubov and Volosivets (2012), and Volosivets and Kuznetsova (2020).