Optical Convolutional Neural Networks: Methodology and Advances (Invited)

被引:3
作者
Meng, Xiangyan [1 ,2 ,3 ]
Shi, Nuannuan [1 ,2 ,3 ]
Li, Guangyi [1 ,2 ,3 ]
Li, Wei [1 ,2 ,3 ]
Zhu, Ninghua [1 ,2 ,3 ]
Li, Ming [1 ,2 ,3 ]
机构
[1] Inst Semicond, Chinese Acad Sci, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 13期
基金
中国国家自然科学基金;
关键词
convolutional neural networks; optical computing; photonics signal processing; ARTIFICIAL-INTELLIGENCE; MOORES LAW; BACKPROPAGATION; DESIGN; CLASSIFICATION; ACCELERATOR;
D O I
10.3390/app13137523
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a leading branch of deep learning, the convolutional neural network (CNN) is inspired by the natural visual perceptron mechanism of living things, showing great application in image recognition, language processing, and other fields. Photonics technology provides a new route for intelligent signal processing with the dramatic potential of its ultralarge bandwidth and ultralow power consumption, which automatically completes the computing process after the signal propagates through the processor with an analog computing architecture. In this paper, we focus on the key enabling technology of optical CNN, including reviewing the recent advances in the research hotspots, overviewing the current challenges and limitations that need to be further overcome, and discussing its potential application.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Convolutional Neural Networks Implementations for Computer Vision
    Michalski, Pawel
    Ruszczak, Bogdan
    Tomaszewski, Michal
    BIOMEDICAL ENGINEERING AND NEUROSCIENCE, 2018, 720 : 98 - 110
  • [32] Plug and Play Deep Convolutional Neural Networks
    Neary, Patrick
    Allan, Vicki
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 388 - 395
  • [33] Egyptian Hieroglyphs Segmentation with Convolutional Neural Networks
    Guidi, Tommaso
    Python, Lorenzo
    Forasassi, Matteo
    Cucci, Costanza
    Franci, Massimiliano
    Argenti, Fabrizio
    Barucci, Andrea
    ALGORITHMS, 2023, 16 (02)
  • [34] A Survey on Convolutional Neural Networks for MRI Analysis
    Hardaha, Shreya
    Edla, Damodar Reddy
    Parne, Saidi Reddy
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 128 (02) : 1065 - 1085
  • [35] Partial Discharge Detection with Convolutional Neural Networks
    Wang, Wei
    Yu, Nanpeng
    2020 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2020,
  • [36] Convolutional Neural Networks for Robust Classification of Drones
    Dale, Holly
    Jahangir, Mohammed
    Baker, Christopher J.
    Antoniou, Michail
    Harman, Stephen
    Ahmad, Bashar, I
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [37] ARCHITECTURE RECOGNITION BY MEANS OF CONVOLUTIONAL NEURAL NETWORKS
    Andrianaivo, Louis N.
    D'Autilia, Roberto
    Palma, Valerio
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 77 - 84
  • [38] Hybrid Convolutional Neural Networks with Reliability Guarantee
    Doran, Hans Dermot
    Veljanovska, Suzana
    2024 54TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS, DSN-W 2024, 2024, : 63 - 65
  • [39] Convolutional Neural Networks for Multimedia Sentiment Analysis
    Cai, Guoyong
    Xia, Binbin
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2015, 2015, 9362 : 159 - 167
  • [40] CONVOLUTIONAL NEURAL NETWORKS FOR DIABETIC RETINOPATHY DETECTION
    Patino-Perez, Darwin
    Armijos-Valarezo, Luis
    Choez-Acosta, Luis
    Burgos-Robalino, Freddy
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2025, (33):