AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials

被引:50
作者
Lan, Janice [1 ]
Palizhati, Aini [2 ]
Shuaibi, Muhammed [1 ]
Wood, Brandon M. [1 ]
Wander, Brook [2 ]
Das, Abhishek [1 ]
Uyttendaele, Matt [1 ]
Zitnick, C. Lawrence [1 ]
Ulissi, Zachary W. [2 ,3 ]
机构
[1] Meta AI, Fundamental AI Res FAIR, Menlo Pk, CA 94025 USA
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Scott Inst Energy Innovat, Pittsburgh, PA 15213 USA
关键词
ELECTROCATALYSTS; METAL; DISCOVERY; EXCHANGE; SURFACE; SEARCH; MOTIFS;
D O I
10.1038/s41524-023-01121-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A common task for many computational methods is the need to accurately compute the adsorption energy for an adsorbate and a catalyst surface of interest. Traditionally, the identification of low-energy adsorbate-surface configurations relies on heuristic methods and researcher intuition. As the desire to perform high-throughput screening increases, it becomes challenging to use heuristics and intuition alone. In this paper, we demonstrate machine learning potentials can be leveraged to identify low-energy adsorbate-surface configurations more accurately and efficiently. Our algorithm provides a spectrum of trade-offs between accuracy and efficiency, with one balanced option finding the lowest energy configuration 87.36% of the time, while achieving a similar to 2000x speedup in computation. To standardize benchmarking, we introduce the Open Catalyst Dense dataset containing nearly 1000 diverse surfaces and similar to 100,000 unique configurations.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts [J].
Andersson, MP ;
Bligaard, T ;
Kustov, A ;
Larsen, KE ;
Greeley, J ;
Johannessen, T ;
Christensen, CH ;
Norskov, JK .
JOURNAL OF CATALYSIS, 2006, 239 (02) :501-506
[2]   The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].
Bligaard, T ;
Norskov, JK ;
Dahl, S ;
Matthiesen, J ;
Christensen, CH ;
Sehested, J .
JOURNAL OF CATALYSIS, 2004, 224 (01) :206-217
[3]   Graph Theory Approach to High-Throughput Surface Adsorption Structure Generation [J].
Boes, Jacob R. ;
Mamun, Osman ;
Winther, Kirsten ;
Bligaard, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (11) :2281-2285
[4]   Bayesian optimization for conformer generation [J].
Chan, Lucian ;
Hutchison, Geoffrey R. ;
Morris, Garrett M. .
JOURNAL OF CHEMINFORMATICS, 2019, 11
[5]   Application of Density Functional Tight Binding and Machine Learning to Evaluate the Stability of Biomass Intermediates on the Rh(111) Surface [J].
Chang, Chaoyi ;
Medford, Andrew J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (33) :18210-18216
[6]   Open Catalyst 2020 (OC20) Dataset and Community Challenges [J].
Chanussot, Lowik ;
Das, Abhishek ;
Goyal, Siddharth ;
Lavril, Thibaut ;
Shuaibi, Muhammed ;
Riviere, Morgane ;
Tran, Kevin ;
Heras-Domingo, Javier ;
Ho, Caleb ;
Hu, Weihua ;
Palizhati, Aini ;
Sriram, Anuroop ;
Wood, Brandon ;
Yoon, Junwoong ;
Parikh, Devi ;
Zitnick, C. Lawrence ;
Ulissi, Zachary .
ACS CATALYSIS, 2021, 11 (10) :6059-6072
[7]   Machine learning of accurate energy-conserving molecular force fields [J].
Chmiela, Stefan ;
Tkatchenko, Alexandre ;
Sauceda, Huziel E. ;
Poltavsky, Igor ;
Schuett, Kristof T. ;
Mueller, Klaus-Robert .
SCIENCE ADVANCES, 2017, 3 (05)
[8]   Recent advances and applications of deep learning methods in materials science [J].
Choudhary, Kamal ;
DeCost, Brian ;
Chen, Chi ;
Jain, Anubhav ;
Tavazza, Francesca ;
Cohn, Ryan ;
Park, Cheol Woo ;
Choudhary, Alok ;
Agrawal, Ankit ;
Billinge, Simon J. L. ;
Holm, Elizabeth ;
Ong, Shyue Ping ;
Wolverton, Chris .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[9]   Graph theory approach to determine configurations of multidentate and high coverage adsorbates for heterogeneous catalysis [J].
Deshpande, Siddharth ;
Maxson, Tristan ;
Greeley, Jeffrey .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[10]  
Dumesic J. A., 2008, PRINCIPLES HETEROGEN