Hyperspectral Image Super-Resolution Based on Spatial-Spectral Feature Extraction Network

被引:3
作者
Li Yanshan [1 ]
Chen Shifu [1 ]
Luo Wenhan [2 ]
Zhou Li [1 ]
Xie Weixin [1 ]
机构
[1] Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen 518060, Peoples R China
[2] Tencent, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; Super-resolution; Spectral difference; Spatial-spectral feature extraction; FUSION; CNN;
D O I
10.23919/cje.2021.00.081
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Constrained by the physics of hyperspectral sensors, the spatial resolution of hyperspectral images (HSI) is low. Hyperspectral image super-resolution (HSI SR) is a task to obtain high-resolution hyperspectral images from low-resolution hyperspectral images. Existing algorithms have the problem of losing important spectral information while improving spatial resolution. To handle this problem, a spatial-spectral feature extraction network (SSFEN) for HSI SR is proposed in this paper. It enhances the spatial resolution of the HSI while preserving the spectral information. The SSFEN is composed of three parts: spatial-spectral mapping network, spatial reconstruction network, and spatial-spectral fusing network. And a joint loss function with spatial and spectral constraints is designed to guide the training of the SSFEN. Experiment results show that the proposed method improves the spatial resolution of the HSI and effectively preserves the spectral information simultaneously.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 43 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   An Efficient Pan Sharpening via Texture Based Dictionary Learning and Sparse Representation [J].
Ayas, Selen ;
Gormus, Esra Tunc ;
Ekinci, Murat .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (07) :2448-2460
[3]  
Chakrabarti A, 2011, PROC CVPR IEEE, P193, DOI 10.1109/CVPR.2011.5995660
[4]   Fusion of Infrared and Visible Images Based on Infrared Object Extraction [J].
Chuanzhen Rong ;
Gaohang Liu ;
Zhuolin Ping ;
Yongxing Jia ;
Zhenjun Yue ;
Guanghui Xu .
CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (02) :339-348
[5]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[6]   Hyperspectral Image Super-Resolution via Non-Negative Structured Sparse Representation [J].
Dong, Weisheng ;
Fu, Fazuo ;
Shi, Guangming ;
Cao, Xun ;
Wu, Jinjian ;
Li, Guangyu ;
Li, Xin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (05) :2337-2352
[7]   PLTD: Patch-Based Low-Rank Tensor Decomposition for Hyperspectral Images [J].
Du, Bo ;
Zhang, Mengfei ;
Zhang, Lefei ;
Hu, Ruimin ;
Tao, Dacheng .
IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (01) :67-79
[8]   Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images [J].
Du, Bo ;
Zhang, Yuxiang ;
Zhang, Liangpei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5345-5357
[9]   Single-frame super-resolution in remote sensing: a practical overview [J].
Fernandez-Beltran, Ruben ;
Latorre-Carmona, Pedro ;
Pla, Filiberto .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (01) :314-354
[10]   Hyperspectral Image Super-Resolution by Spectral Difference Learning and Spatial Error Correction [J].
Hu, Jing ;
Li, Yunsong ;
Xie, Weiying .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) :1825-1829