Discrete-time analysis of optimized Schwarz waveform relaxation with Robin parameters depending on the targeted iteration count

被引:1
作者
Arnoult, Arthur [1 ]
Japhet, Caroline [1 ]
Omnes, Pascal [1 ,2 ]
机构
[1] Univ Sorbonne Paris Nord, Inst Galilee, LAGA, CNRS,UMR 7539, 99 Ave J-B Clement, F-93430 Villetaneuse, France
[2] Univ Paris Saclay, Serv Genie Logiciel Simulat, CEA, F-91191 Gif Sur Yvette, France
关键词
Optimized Schwarz waveform relaxation discrete-time convergence analysis; iteration-dependent Robin parameters; DOMAIN DECOMPOSITION; EQUATION;
D O I
10.1051/m2an/2023051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new approach that provides new results in the convergence analysis of optimized Schwarz waveform relaxation (OSWR) iterations for parabolic problems, and allows to define efficient optimized Robin parameters that depend on the targeted iteration count, a property that is shared by the actual observed optimal parameters, while traditional Fourier analysis in the time direction leads to iteration independent parameters. This new approach is based on the exact resolution of the time semi-discrete error equations. It allows to recommend a couple (number of iterations, Robin parameter) to reach a given accuracy. While the general ideas may apply to an arbitrary space dimension, the analysis is first presented in the one dimensional case. Numerical experiments illustrate the performance obtained with such iteration-dependent optimized Robin parameters.
引用
收藏
页码:2371 / 2396
页数:26
相关论文
共 41 条
[1]   Space-time domain decomposition for two-phase flow between different rock types [J].
Ahmed, Elyes ;
Japhet, Caroline ;
Kern, Michel .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 371
[2]   Optimized Schwarz waveform relaxation for advection reaction diffusion equations in two dimensions [J].
Bennequin, Daniel ;
Gander, Martin J. ;
Gouarin, Loic ;
Halpern, Laurence .
NUMERISCHE MATHEMATIK, 2016, 134 (03) :513-567
[3]   Space-Time Domain Decomposition with Finite Volumes for Porous Media Applications [J].
Berthe, Paul-Marie ;
Japhet, Caroline ;
Omnes, Pascal .
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 :567-575
[4]  
Blayo E., 2007, DOMAIN DECOMPOSITION, VXVI, P267, DOI 10.1007/978-3-540-34469-8
[5]  
Blayo E., 2017, SMAI J COMPUT MATH, P117
[6]   Overlapping Domain Decomposition Applied to the Navier-Stokes Equations [J].
Ciobanu, Oana ;
Halpern, Laurence ;
Juvigny, Xavier ;
Ryan, Juliette .
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 :461-470
[7]  
Clement S., 2022, SMAI J COMPUT MATH, P99
[8]   Schwarz Waveform Relaxation Methods for Systems of Semi-Linear Reaction-Diffusion Equations [J].
Descombes, Stephane ;
Dolean, Victorita ;
Gander, Martin J. .
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 :423-+
[9]   COUPLING PARAREAL WITH OPTIMIZED SCHWARZ WAVEFORM RELAXATION FOR PARABOLIC PROBLEMS [J].
Duc Quang Bui ;
Japhet, Caroline ;
Maday, Yvon ;
Omnes, Pascal .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) :913-939
[10]  
Eaton J.W., 2022, GNU Octave Version 7.3.0 Manual: A High Level Interactive Language for Numerical Computations