Bending the patient safety curve: how much can AI help?

被引:20
作者
Classen, David C. [1 ]
Longhurst, Christopher [2 ]
Thomas, Eric J. [3 ,4 ]
机构
[1] Univ Utah, Sch Med, Div Clin Epidemiol, Salt Lake City, UT 84112 USA
[2] UC San Diego Hlth, Dept Med & Pediat, San Diego, CA USA
[3] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Houston, TX USA
[4] UT Houston, Mem Hermann Ctr Healthcare Quality & Safety, Houston, TX USA
关键词
ARTIFICIAL-INTELLIGENCE; REAL-TIME; IDENTIFICATION; RISK;
D O I
10.1038/s41746-022-00731-5
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This paper reviews the current state of patient safety and the application of artificial intelligence (AI) techniques to patient safety. This paper defines patient safety broadly, not just inpatient care but across the continuum of care, including diagnostic errors, misdiagnosis, adverse events, injuries, and measurement issues. It outlines the major current uses of AI in patient safety and the relative adoption of these techniques in hospitals and health systems. It also outlines some of the limitations of these AI systems and the challenges with evaluation of these systems. Finally, it outlines the importance of developing a proactive agenda for AI in healthcare that includes marked increased funding of research and evaluation in this area.
引用
收藏
页数:3
相关论文
共 17 条
[1]  
[Anonymous], 2021, ADV AN C CONV PAT SA
[2]   Deployment of artificial intelligence for radiographic diagnosis of COVID-19 pneumonia in the emergency department [J].
Carlile, Morgan ;
Hurt, Brian ;
Hsiao, Albert ;
Hogarth, Michael ;
Longhurst, Christopher A. ;
Dameff, Christian .
JOURNAL OF THE AMERICAN COLLEGE OF EMERGENCY PHYSICIANS OPEN, 2020, 1 (06) :1459-1464
[3]   An Electronic Health Record Based Real-Time Analytics Program For Patient Safety Surveillance And Improvement [J].
Classen, David ;
Li, Michael ;
Miller, Suzanne ;
Ladner, Drew .
HEALTH AFFAIRS, 2018, 37 (11) :1805-1812
[4]   National Trends in the Safety Performance of Electronic Health Record Systems From 2009 to 2018 [J].
Classen, David C. ;
Holmgren, A. Jay ;
Co, Zoe ;
Newmark, Lisa P. ;
Seger, Diane ;
Danforth, Melissa ;
Bates, David W. .
JAMA NETWORK OPEN, 2020, 3 (05)
[5]   Measuring Patient Safety in Real Time: An Essential Method for Effectively Improving the Safety of Care [J].
Classen, David C. ;
Griffin, Frances A. ;
Berwick, Donald M. .
ANNALS OF INTERNAL MEDICINE, 2017, 167 (12) :882-+
[6]   Automated Identification of Adults at Risk for In-Hospital Clinical Deterioration [J].
Escobar, Gabriel J. ;
Liu, Vincent X. ;
Schuler, Alejandro ;
Lawson, Brian ;
Greene, John D. ;
Kipnis, Patricia .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (20) :1951-1960
[7]   The Clinician and Dataset Shift in Artificial Intelligence [J].
Finlayson, Samuel G. ;
Subbaswamy, Adarsh ;
Singh, Karandeep ;
Bowers, John ;
Kupke, Annabel ;
Zittrain, Jonathan ;
Kohane, Isaac S. ;
Saria, Suchi .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (03) :283-286
[8]   Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets [J].
Harmon, Stephanie A. ;
Sanford, Thomas H. ;
Xu, Sheng ;
Turkbey, Evrim B. ;
Roth, Holger ;
Xu, Ziyue ;
Yang, Dong ;
Myronenko, Andriy ;
Anderson, Victoria ;
Amalou, Amel ;
Blain, Maxime ;
Kassin, Michael ;
Long, Dilara ;
Varble, Nicole ;
Walker, Stephanie M. ;
Bagci, Ulas ;
Ierardi, Anna Maria ;
Stellato, Elvira ;
Plensich, Guido Giovanni ;
Franceschelli, Giuseppe ;
Girlando, Cristiano ;
Irmici, Giovanni ;
Labella, Dominic ;
Hammoud, Dima ;
Malayeri, Ashkan ;
Jones, Elizabeth ;
Summers, Ronald M. ;
Choyke, Peter L. ;
Xu, Daguang ;
Flores, Mona ;
Tamura, Kaku ;
Obinata, Hirofumi ;
Mori, Hitoshi ;
Patella, Francesca ;
Cariati, Maurizio ;
Carrafiello, Gianpaolo ;
An, Peng ;
Wood, Bradford J. ;
Turkbey, Baris .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data [J].
Kim, Chris K. ;
Choi, Ji Whae ;
Jiao, Zhicheng ;
Wang, Dongcui ;
Wu, Jing ;
Yi, Thomas Y. ;
Halsey, Kasey C. ;
Eweje, Feyisope ;
Tran, Thi My Linh ;
Liu, Chang ;
Wang, Robin ;
Sollee, John ;
Hsieh, Celina ;
Chang, Ken ;
Yang, Fang-Xue ;
Singh, Ritambhara ;
Ou, Jie-Lin ;
Huang, Raymond Y. ;
Feng, Cai ;
Feldman, Michael D. ;
Liu, Tao ;
Gong, Ji Sheng ;
Lu, Shaolei ;
Eickhoff, Carsten ;
Feng, Xue ;
Kamel, Ihab ;
Sebro, Ronnie ;
Atalay, Michael K. ;
Healey, Terrance ;
Fan, Yong ;
Liao, Wei-Hua ;
Wang, Jianxin ;
Bai, Harrison X. .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[10]   The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards [J].
Lauritsen, Simon Meyer ;
Thiesson, Bo ;
Jorgensen, Marianne Johansson ;
Riis, Anders Hammerich ;
Espelund, Ulrick Skipper ;
Weile, Jesper Bo ;
Lange, Jeppe .
NPJ DIGITAL MEDICINE, 2021, 4 (01)