Dendrite Growth-Microstructure-Stress-Interrelations in Garnet Solid-State Electrolyte

被引:12
作者
Raj, Vikalp [1 ,2 ,3 ]
Naik, Kaustubh G. [4 ]
Vishnugopi, Bairav S. [4 ]
Rana, Ajeet Kumar [1 ]
Manning, Andrew Scott [2 ,3 ]
Mahapatra, Smruti Rekha [1 ]
Varun, Kr [1 ]
Singh, Vipin [1 ]
Nigam, Abhineet [1 ]
Mcbrayer, Josefine D. [5 ]
Mukherjee, Partha P. [4 ]
Aetukuri, Naga Phani B. [1 ]
Mitlin, David [2 ,3 ]
机构
[1] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Univ Texas Austin, Texas Mat Inst TMI, Austin, TX 78712 USA
[4] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[5] Sandia Natl Labs, Power Sources Technol Grp, Albuquerque, NM 87185 USA
关键词
all solid-state battery (ASSB); chemo-mechanical; electrochemical-mechanical; LLZO; metal dendrite; oxide electrolyte; FATIGUE-CRACK-PROPAGATION; LITHIUM ION CONDUCTION; SURFACE; MECHANISMS; BATTERIES; CERAMICS; LLZO; AL;
D O I
10.1002/aenm.202303062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study illustrates how the microstructure of garnet solid-state electrolytes (SSE) affects the stress-state and dendrite growth. Tantalum-doped lithium lanthanum zirconium oxide (LLZTO, Li6.4La3Zr1.4Ta0.6O12) is synthesized by powder processing and sintering (AS), or with the incorporation of intermediate-stage high-energy milling (M). The M compact displays higher density (91.5% vs 82.5% of theoretical), and per quantitative stereology, lower average grain size (5.4 +/- 2.6 vs 21.3 +/- 11.1 mu m) and lower AFM-derived RMS surface roughness contacting the Li metal (45 vs 161 nm). These differences enable symmetric M cells to electrochemically cycle at constant capacity (0.1 mAh cm-2) with enhanced critical current density (CCD) of 1.4 versus 0.3 mA cm-2. It is demonstrated that LLZTO grain size distribution and internal porosity critically affect electrical short-circuit failure, indicating the importance of electronic properties. Lithium dendrites propagate intergranularly through regions where LLZTO grains are smaller than the bulk average (7.4 +/- 3.8 mu m for AS in a symmetric cell, 3.1 +/- 1.4 mu m for M in a half-cell). Metal also accumulates in the otherwise empty pores of the sintered compact present along the dendrite path. Mechanistic modeling indicates that reaction and stress heterogeneities are interrelated, leading to current focusing and preferential plating at grain boundaries. Garnet-based LLZTO (Ta-doped Li7La3Zr2O12) solid-state electrolytes (SSEs) for all-solid-state batteries (ASSBs) display poor electrochemical stability. For the first time it is demonstrated that cycling-induced Li metal dendrites propagate preferentially through regions with smaller mean grain size versus the bulk. This occurs regardless of processing history or cell configuration. image
引用
收藏
页数:13
相关论文
共 87 条
  • [1] Flexible Ion-Conducting Composite Membranes for Lithium Batteries
    Aetukuri, Nagaphani B.
    Kitajima, Shintaro
    Jung, Edward
    Thompson, Leslie E.
    Virwani, Kumar
    Reich, Maria-Louisa
    Kunze, Miriam
    Schneider, Meike
    Schmidbauer, Wolfgang
    Wilcke, Winfried W.
    Bethune, Donald S.
    Scott, J. Campbell
    Miller, Robert D.
    Kim, Ho-Cheol
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (14)
  • [2] Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
    Albertus, Paul
    Babinec, Susan
    Litzelman, Scott
    Newman, Aron
    [J]. NATURE ENERGY, 2018, 3 (01): : 16 - 21
  • [3] Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12
    Allen, J. L.
    Wolfenstine, J.
    Rangasamy, E.
    Sakamoto, J.
    [J]. JOURNAL OF POWER SOURCES, 2012, 206 : 315 - 319
  • [4] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [5] Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries
    Baek, Seung-Wook
    Lee, Jae-Myung
    Kim, Tae Young
    Song, Min-Sang
    Park, Youngsin
    [J]. JOURNAL OF POWER SOURCES, 2014, 249 : 197 - 206
  • [6] 12 μm-Thick Sintered Garnet Ceramic Skeleton Enabling High-Energy-Density Solid-State Lithium Metal Batteries
    Bao, Chengshuai
    Zheng, Chujun
    Wu, Meifen
    Zhang, Yan
    Jin, Jun
    Chen, Huan
    Wen, Zhaoyin
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (13)
  • [7] The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes
    Barai, Pallab
    Ngo, Anh T.
    Narayanan, Badri
    Higa, Kenneth
    Curtiss, Larry A.
    Srinivasan, Venkat
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
  • [8] Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries
    Barai, Pallab
    Higa, Kenneth
    Ngo, Anh T.
    Curtiss, Larry A.
    Srinivasan, Venkat
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : A1752 - A1762
  • [9] PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"
    Chen, Long
    Li, Yutao
    Li, Shuai-Peng
    Fan, Li-Zhen
    Nan, Ce-Wen
    Goodenough, John B.
    [J]. NANO ENERGY, 2018, 46 : 176 - 184
  • [10] Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries
    Chen, Yuncai
    Jiang, Yidong
    Chi, Shang-Sen
    Woo, Haw Jiunn
    Yu, Kai
    Ma, Jun
    Wang, Jun
    Wang, Chaoyang
    Deng, Yonghong
    [J]. JOURNAL OF POWER SOURCES, 2022, 521