Fiber-reinforced quasi-solid polymer electrolytes enabling stable Li-metal batteries

被引:3
|
作者
Gao, Shilun [1 ]
Zhang, Youjia [1 ]
Ma, Mengxiang [1 ]
Li, Zhenxi [1 ]
Sun, Zongxue [2 ]
Tian, Ming [2 ]
Yang, Huabin [1 ,3 ]
Cao, Peng-Fei [2 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[3] Nankai Univ, Sch Mat Sci & Engn, Tianjin Key Lab Met & Mol Based Mat Chem, Tianjin 300350, Peoples R China
来源
MATERIALS ADVANCES | 2023年 / 4卷 / 16期
基金
中国博士后科学基金;
关键词
LITHIUM METAL; ANODE; STABILITY; LIQUID;
D O I
10.1039/d3ma00078h
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With high ionic conductivity and good contact/adhesion with electrodes, quasi-solid polymer electrolytes (QPEs) are considered as one of the most promising options to address the safety concerns of next-generation rechargeable batteries. A trade-off exists between mechanical strength and ionic conductivity, e.g., a high electrolyte uptake ratio leads to high ionic conductivity while low mechanical strength, and vice versa. Constructing QPEs with integrated high ionic conductivity and mechanical robustness is crucial in promoting the practical use of safe and long-cycling lithium (Li)-metal batteries (LMBs). Herein, by integrating the poly(propylene) fiber (PPF) and a rationally designed polymer network, i.e., poly[poly(ethylene glycol) methyl ether methacrylate)-r-(2-ethylhexyl acrylate)-r-sodium (p-styrene sulfonate)-r-polyethylene glycol dimethacrylate] (PPES), a mechanically reinforced PPES@PPF film is obtained with a decent Young's modulus of similar to 190 MPa. This fiber reinforced QPE (rQPE) exhibits a high ionic conductivity of 1.1 mS cm(-1) at 60 degrees C. The resulting Li/rQPE/LiFePO4 (LFP) cell shows excellent cycling stability with a capacity retention of 91% over 900 cycles. Moreover, a cell with ultra-thin QPE (tQPE, similar to 10 mu m) and a high-voltage LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode was also assembled, and delivers stable cycling performance over 300 cycles with a capacity retention of 80%. The current design of fiber-reinforced QPE not only surpasses the mechanical strength-ionic conductivity trade-off of QPEs, but also sheds light on the application of solid electrolytes for high-energy density LMBs.
引用
收藏
页码:3452 / 3460
页数:10
相关论文
共 50 条
  • [41] PVDF-HFP Based, Quasi-Solid Nanocomposite Electrolytes for Lithium Metal Batteries
    Carena, Eleonora
    Mezzomo, Lorenzo
    Vallana, Nicholas
    Ceribelli, Nicole
    Di Liberto, Giovanni
    Mostoni, Silvia
    Ferrara, Chiara
    Mauri, Michele
    Lorenzi, Roberto
    Giordano, Livia
    Ruffo, Riccardo
    Mustarelli, Piercarlo
    SMALL, 2024, 20 (30)
  • [42] Mesoporous silicas tethered with anions as quasi-solid electrolytes for lithium-metal batteries
    Chen, Zerui
    Xu, Yifei
    Zhao, Wei
    Liu, Qianqian
    Liu, Qian
    Hu, Zhikun
    Liu, Yan
    Wu, Hao Bin
    CHEMICAL COMMUNICATIONS, 2022, 58 (98) : 13656 - 13659
  • [43] Fiber-Reinforced Ultrathin Solid Polymer Electrolyte for Solid-State Lithium-Metal Batteries
    Zhang, Yining
    Yu, Jiameng
    Shi, Hongsheng
    Wang, Shuanghong
    Lv, Yinjie
    Zhang, Yue
    Yuan, Qiong
    Liang, Jinjiang
    Gao, Tianyi
    Wei, Ran
    Chen, Xin
    Wang, Luyao
    Yu, Yi
    Liu, Wei
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [44] Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries
    Song, Cun
    Li, Zhengang
    Peng, Jun
    Wu, Xiaohong
    Peng, Hao
    Zhou, Shiyuan
    Qiao, Yu
    Sun, Hui
    Huang, Ling
    Sun, Shi-Gang
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (30) : 16087 - 16094
  • [45] Nonflammable, robust and flexible electrolytes enabled by phosphate coupled polymer-polymer for Li-metal batteries
    Lin, Wentao
    Liu, Jiapeng
    Xue, Lichun
    Li, Yueqing
    Yu, Haoze
    Xiong, Yongqiang
    Chen, Dengjie
    Ciucci, Francesco
    Yu, Jing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 621 : 222 - 231
  • [46] A quasi-solid polymer electrolyte initiated by two-dimensional functional nanosheets for stable lithium metal batteries
    Zhang, Ying
    Huang, Jiawen
    Wang, Guanyao
    Dou, Yuhai
    Yuan, Ding
    Lin, Liangxu
    Wu, Kuan
    Liu, Hua Kun
    Dou, Shi-Xue
    Wu, Chao
    NANOSCALE, 2023, 15 (22) : 9700 - 9709
  • [47] Toward High-Voltage Solid-State Li-Metal Batteries with Double-Layer Polymer Electrolytes
    Arrese-Igor, Mikel
    Martinez-Ibanez, Maria
    Pavlenko, Ekaterina
    Forsyth, Maria
    Zhu, Haijin
    Armand, Michel
    Aguesse, Frederic
    Lopez-Aranguren, Pedro
    ACS ENERGY LETTERS, 2022, 7 (04) : 1473 - 1480
  • [48] Hydrogel Electrolytes for Quasi-Solid Zinc-Based Batteries
    Lu, Kang
    Jiang, Tongtong
    Hu, Haibo
    Wu, Mingzai
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [49] Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries
    Kalaga, Kaushik
    Rodrigues, Marco-Tulio F.
    Gullapalli, Hemtej
    Babu, Ganguli
    Arava, Leela Mohana Reddy
    Ajayan, Pulickel M.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (46) : 25777 - 25783
  • [50] Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces
    Kim, Kun Joong
    Balaish, Moran
    Wadaguchi, Masaki
    Kong, Lingping
    Rupp, Jennifer L. M.
    ADVANCED ENERGY MATERIALS, 2021, 11 (01)