Fiber-reinforced quasi-solid polymer electrolytes enabling stable Li-metal batteries

被引:3
|
作者
Gao, Shilun [1 ]
Zhang, Youjia [1 ]
Ma, Mengxiang [1 ]
Li, Zhenxi [1 ]
Sun, Zongxue [2 ]
Tian, Ming [2 ]
Yang, Huabin [1 ,3 ]
Cao, Peng-Fei [2 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[3] Nankai Univ, Sch Mat Sci & Engn, Tianjin Key Lab Met & Mol Based Mat Chem, Tianjin 300350, Peoples R China
来源
MATERIALS ADVANCES | 2023年 / 4卷 / 16期
基金
中国博士后科学基金;
关键词
LITHIUM METAL; ANODE; STABILITY; LIQUID;
D O I
10.1039/d3ma00078h
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With high ionic conductivity and good contact/adhesion with electrodes, quasi-solid polymer electrolytes (QPEs) are considered as one of the most promising options to address the safety concerns of next-generation rechargeable batteries. A trade-off exists between mechanical strength and ionic conductivity, e.g., a high electrolyte uptake ratio leads to high ionic conductivity while low mechanical strength, and vice versa. Constructing QPEs with integrated high ionic conductivity and mechanical robustness is crucial in promoting the practical use of safe and long-cycling lithium (Li)-metal batteries (LMBs). Herein, by integrating the poly(propylene) fiber (PPF) and a rationally designed polymer network, i.e., poly[poly(ethylene glycol) methyl ether methacrylate)-r-(2-ethylhexyl acrylate)-r-sodium (p-styrene sulfonate)-r-polyethylene glycol dimethacrylate] (PPES), a mechanically reinforced PPES@PPF film is obtained with a decent Young's modulus of similar to 190 MPa. This fiber reinforced QPE (rQPE) exhibits a high ionic conductivity of 1.1 mS cm(-1) at 60 degrees C. The resulting Li/rQPE/LiFePO4 (LFP) cell shows excellent cycling stability with a capacity retention of 91% over 900 cycles. Moreover, a cell with ultra-thin QPE (tQPE, similar to 10 mu m) and a high-voltage LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode was also assembled, and delivers stable cycling performance over 300 cycles with a capacity retention of 80%. The current design of fiber-reinforced QPE not only surpasses the mechanical strength-ionic conductivity trade-off of QPEs, but also sheds light on the application of solid electrolytes for high-energy density LMBs.
引用
收藏
页码:3452 / 3460
页数:10
相关论文
共 50 条
  • [21] Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries
    Kalaga, Kaushik
    Rodrigues, Marco-Tulio F.
    Gullapalli, Hemtej
    Babu, Ganguli
    Arava, Leela Mohana Reddy
    Ajayan, Pulickel M.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (46) : 25777 - 25783
  • [22] Constructing a multi-functional polymer network for ultra-stable and safe Li-metal batteries
    Gao, Shilun
    Li, Zhenxi
    Zhang, Zhen
    Li, Bingrui
    Chen, Xi Chelsea
    Yang, Guang
    Saito, Tomonori
    Tian, Ming
    Yang, Huabin
    Cao, Peng-Fei
    ENERGY STORAGE MATERIALS, 2023, 55 : 214 - 224
  • [23] Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries
    Chen, Jiahua
    Yang, Zheng
    Liu, Guohua
    Li, Cheng
    Yi, Jingsi
    Fan, Ming
    Tan, Huaping
    Lu, Ziheng
    Yang, Chunlei
    ENERGY STORAGE MATERIALS, 2020, 25 : 305 - 312
  • [24] Quasi-solid electrolytes with tailored lithium solvation for fast-charging lithium metal batteries
    Zhou, Guodong
    Yu, Jing
    Liu, Jiapeng
    Lin, Xidong
    Wang, Yuhao
    Law, Ho Mei
    Ciucci, Francesco
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (02):
  • [25] In situ interfacial reactions in hydride-oxide composite electrolytes for stable all-solid-state Li-metal batteries
    Zeng, Shunqin
    Zhao, Meinan
    Xie, Chen
    Li, Jianhui
    Ding, Xiaoli
    He, Liqing
    Li, Yongtao
    Zhang, Qingan
    Li, Hai-Wen
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (11) : 3323 - 3333
  • [26] An entanglement association polymer electrolyte for Li-metal batteries
    Wang, Hangchao
    Yang, Yali
    Gao, Chuan
    Chen, Tao
    Song, Jin
    Zuo, Yuxuan
    Fang, Qiu
    Yang, Tonghuan
    Xiao, Wukun
    Zhang, Kun
    Wang, Xuefeng
    Xia, Dingguo
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [27] Bayesian optimisation with transfer learning for NASICON-type solid electrolytes for all-solid-state Li-metal batteries
    Fukuda, Hiroko
    Kusakawa, Shunya
    Nakano, Koki
    Tanibata, Naoto
    Takeda, Hayami
    Nakayama, Masanobu
    Karasuyama, Masayuki
    Takeuchi, Ichiro
    Natori, Takaaki
    Ono, Yasuharu
    RSC ADVANCES, 2022, 12 (47) : 30696 - 30703
  • [28] Understanding the complexities of Li metal for solid-state Li-metal batteries
    Westover, Andrew S.
    MRS BULLETIN, 2024, 49 (05) : 503 - 511
  • [29] Quasi-Solid Aqueous Electrolytes for Low-Cost Sustainable Alkali-Metal Batteries
    Yi, Xianhui
    Feng, Yanhong
    Rao, Apparao M. M.
    Zhou, Jiang
    Wang, Chengxin
    Lu, Bingan
    ADVANCED MATERIALS, 2023, 35 (29)
  • [30] A robust solid electrolyte interphase layer coated on polyethylene separator surface induced by Ge interlayer for stable Li-metal batteries
    Yue, Chuang
    Sun, Seho
    Jang, Minchul
    Park, Eunkyung
    Son, Byoungkuk
    Son, Hyunsu
    Liu, Zhiming
    Wang, Donghai
    Paik, Ungyu
    Song, Taeseup
    ELECTROCHIMICA ACTA, 2021, 370