共 50 条
Kinetic and thermodynamic study of micron waste polypropylene thermal degradation
被引:1
|作者:
Liu, Yitao
[1
]
Zhao, Zhiyuan
[2
]
Chen, Ruiyu
[1
,3
]
Xu, Xiaokang
[1
]
机构:
[1] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Nanjing, Peoples R China
[2] Westlake Univ, Dept Infrastructure, Zhejiang, Peoples R China
[3] Hong Kong Polytech Univ, Dept Bldg Environm & Energy Engn, Hong Kong, Peoples R China
基金:
中国国家自然科学基金;
中国博士后科学基金;
关键词:
degradation;
kinetics;
micron waste polypropylene;
polymer;
thermodynamics;
thermogravimetry;
ACTIVATION-ENERGY;
HEATING RATE;
PYROLYSIS;
DECOMPOSITION;
PRODUCTS;
NANOCOMPOSITES;
BEHAVIOR;
BLENDS;
PP;
D O I:
10.1002/pol.20230104
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
How to properly dispose of waste polymers is a recognized challenge all over the world. Thermal degradation is currently recognized as a promising method for recycling polymer waste into fuels or products with high energy density without polluting the environment. In the present study, the thermal degradation characteristics, kinetics, thermodynamic parameters, and volatiles of a representative and extremely widely-used polymer (micron waste polypropylene [PP]) pyrolysis in nitrogen were investigated. The results indicate that the thermal degradation of micron waste polypropylene can be considered as a one-step reaction with merely one distinct peak on the reaction rate curves. The peak and average reaction rates decrease with the heating rate. The most appropriate reaction model to characterize the thermal degradation is g(alpha) = 1-(1-alpha)(1/4). The average values of activation energy and pre-exponential factor are 128.76 kJ/mol and 6.79 x 10(9) min(-1), respectively. The kinetic parameters obtained in this study are all larger than those of PP with the particle size of millimeters or larger. The predicted thermogravimetric curves of thermal degradation are in good agreement with the experimental results. The changes of enthalpy, Gibbs free energy, and entropy show that the thermal degradation of micron waste polypropylene is a non-spontaneous and endothermic reaction. In addition, the concentrations of all volatiles in descending order are: H2O > Esters (-COO-) > CO2 > Alkanes (-CH3) > R2C(sic)CH2 > Olefins (C(sic)C) > Alcohols (R-OH) > Methylene group > CO.
引用
收藏
页码:1513 / 1527
页数:15
相关论文