New Liouville type theorems for the stationary Navier-Stokes, MHD, and Hall-MHD equations

被引:6
作者
Cho, Youseung [2 ]
Neustupa, Jiri [1 ]
Yang, Minsuk [2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 1, Czech Republic
[2] Yonsei Univ, Dept Math, Yonseiro 50,Seodaemungu, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Navier-Stokes equation; MHD equations; Hall-MHD equations; Liouville type theorems; SELF-SIMILAR SOLUTIONS;
D O I
10.1088/1361-6544/ad1efc
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish new Liouville-type theorems for weak solutions of the stationary Navier-Stokes equations, stationary magnetohydrodynamics (MHD) equations and stationary Hall-MHD equations under some conditions on the growth of certain Lebesgue norms of the velocity and the magnetic field.
引用
收藏
页数:22
相关论文
共 19 条
[1]  
Chae D, 2022, Z ANGEW MATH PHYS, V73, DOI 10.1007/s00033-022-01701-3
[2]   On the Liouville Type Theorems for Self-Similar Solutions to the Navier-Stokes Equations [J].
Chae, Dongho ;
Wolf, Joerg .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) :549-572
[3]   On Liouville type theorems for the steady Navier-Stokes equations in R3 [J].
Chae, Dongho ;
Wolf, Joerg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5541-5560
[4]   Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces [J].
Chamorro, Diego ;
Jarrin, Oscar ;
Lemarie-Rieusset, Pierre-Gilles .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (03) :689-710
[5]   Remarks on Liouville-Type Theorems for the Steady MHD and Hall-MHD Equations [J].
Chen, Xiaomeng ;
Li, Shuai ;
Wang, Wendong .
JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (01)
[6]   A Liouville-type theorem for the stationary MHD equations [J].
Cho, Youseung ;
Neustupa, Jiri ;
Yang, Minsuk .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
[7]   On Liouville-type theorems for the 2D stationary MHD equations [J].
De Nitti, Nicola ;
Hounkpe, Francis ;
Schulz, Simon .
NONLINEARITY, 2022, 35 (02) :870-888
[8]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[9]  
GIAQUINTA M, 1982, ANN MATH STUD, P3
[10]  
Gilbarg D., 1978, Ann. Sc. Norm. Super. Pisa - Cl. Sci, V5